Самодельное зарядное устройство для малогабаритных аккумуляторов. Устройство для зарядки малогабаритных аккумуляторов

Традиционные зарядные устройства прошлых лет имеют недостатки, они обладают большими габаритами и весом. В последние годы при изготовлении источников питания, радиолюбители огромное предпочтение отдают импульсникам. Это в первую очередь дешевизна, не значительный вес и габариты, причём при малых размерах импульсные устройства выдают приличный ток! Даже как то не привычно смотреть на маленькую коробочку, подключенную к автомобильному аккумулятору, способную его зарядить. Недостатком являются импульсные броски в сети, из за которых данные устройства зачастую выходят из строя, но этим можно пренебречь.

Зарядное устройство, которое будет описано в этой статье, разрабатывалось специально для зарядки аккумуляторов с выходным током до 7А. Можно так же заряжать аккумуляторы от шуруповёрта, бесперебойника, пальчиковые аккумуляторы и др., скорректировав зарядный ток. Контроль тока ведётся на встроенный амперметр. Запускается устройство с помощью пусковой кнопки. При коротком замыкании срывается генерация блокинг-генератора и устройство отключается. Повторное включение производится при помощи той же кнопки. Устройство потребляет от сети ток не более 2А и работоспособно при напряжении 170в.

Рассмотрим электрическую принципиальную схему устройства.

Состоит оно из двух половинок: это высоковольтная цепь с выпрямителем, блокинг-генератором и низковольтная - со вторичным выпрямителем и ШИМ-регулятором. Сетевое напряжение через предохранитель F1 поступает на диодный мост D1, где выпрямляется и сглаживается конденсаторами С1, С2. Постоянное напряжение в пределах 290 вольт подаётся на блокинг-генератор. Основными элементами этого генератора являются транзисторные ключи Т1 и Т2, которые открываются поочерёдно, благодаря синфазному включению обмоток II и IV обратной связи высокочастотного трансформатора. Нагружен генератор на обмотку III трансформатора. Частота генерации лежит в пределах 20-30 кГц. Резисторы R2, R3 в цепи эмиттеров этих транзисторов ограничивают ток, обеспечивая тем самым мягкий режим работы. Резисторы R4, R5 ограничивают ток базы. Диоды D2, D3 предотвращают пробой транзисторов обратным напряжением из за индуктивных выбросов в импульсном трансформаторе. Запускается генератор с помощью короткого импульса, который подаётся на обмотку I через конденсатор С3 и пусковую кнопку S1.

Вторая часть схемы, низковольтная. Переменное напряжение снимается с обмоток V и VI высокочастотного трансформатора, выпрямляется диодной сборкой D4, сглаживается конденсатором С4 и далее поступает на ШИМ регулятор. Выполнен этот регулятор на двух транзисторах Т3 и Т4. Это своеобразный мультивибратор с изменяемой симметрией. От положения движка переменного резистора R10 зависит скважность импульсов, подаваемых на затвор полевого транзистора Т5. Частота генерации ШИМа лежит в пределах 5-7 кГц и определяется ёмкостью конденсаторов С6 и С7. При работе данного зарядного устройства, при нагрузке наблюдался нагрев компонентов схемы, импульсного трансформатора, поэтому я снабдил его вентилятором. Так же имеется контрольная лампочка Н1, индицирующая работу устройства. С помощью амперметра осуществляется контроль зарядного тока.

Конструкция и детали : Все детали и их замена указаны в таблице. На ключевые транзисторы следует установить небольшие радиаторы, площадью в три раза больше, чем сами транзисторы. При использовании устройства на больших токах, до 7А, диодную сборку и полевой транзистор следует так же установить на небольшие радиаторы. Небольшие, потому что кулер создаёт поток воздуха и они сильно не перегреваются.

Трансформатор самодельный, намотан на ферритовом кольце наружным диаметром 30мм.

Обмотка III имеет 140 витков провода ПЭЛ-0,31мм, обмотки I, II и IV содержат по 2 витка и намотаны цветным компьютерным или телефонным проводом (от кабеля). Вторичные обмотки V и VI содержат по 18 витков, но количество витков при необходимости можно откорректировать. Эти обмотки я не стал мотать толстым одножильным проводом, так как это причиняет большие неудобства при намотке. Я изготовил самодельный многожильный провод. Взял 20 жил в один пучок провода ПЭЛ-0,18мм. Растянул 20 жилок вдоль комнаты, затем скрутил их с помощью шуруповёрта. Первой наматывается обмотка III и затем проматывается фторопластовой лентой.

Амперметр - головка от старого магнитофона. Шкалу в децибелах удалил, а вместо неё поставил самостоятельно отградуированную.

Всё содержимое расположено на пластмассовой основе и приклеено полимерным клеем.

А вот так выглядит печатная плата:

При изготовлении данного устройства и дальнейшего его обслуживания соблюдайте правила электробезопасности!

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
D1 Диодный мост

KBP208G

1 В блокнот
D2, D3 Выпрямительный диод

1N4007

2 КД226Д В блокнот
D4 Выпрямительный диод

SBL3040PT

1 Матрица В блокнот
Т1, Т2 Биполярный транзистор

MJE13007

2 EN13007, EN13009 В блокнот
Т3, Т4 Биполярный транзистор

2SC1815

2 КТ315 В блокнот
Т5 Транзистор N302AP 1 Полевой В блокнот
R1 Резистор

330 кОм

1 0,25 Вт В блокнот
R2, R3 Резистор

0.56 Ом

2 0,5 Вт В блокнот
R4, R5 Резистор

22 Ом

2 0,25 Вт В блокнот
R6 Резистор

150 Ом

1 0,5 Вт В блокнот
R7 Резистор

220 Ом

1 0,25 Вт В блокнот
R8, R12 Резистор

2.7 кОм

2 0,25 Вт В блокнот
R9 Резистор

15 кОм

1 В блокнот
R10 Переменный резистор 150 кОм 1 0,25 Вт В блокнот
R11 Резистор

1.5 кОм

1 0,25 Вт

Источники питания

Н. ГЕРЦЕН, г. Березники Пермской обл.
Радио, 2000 год, №7

На питании малогабаритной аппаратуры от гальванических элементов и батарей при сегодняшних ценах можно буквально разориться. Выгоднее, потратясь один раз, перейти на использование аккумуляторов. Для того чтобы они служили долго, их необходимо правильно эксплуатировать: не разряжать ниже допустимого напряжения, заряжать стабильным током, вовремя прекращать зарядку. Но если за выполнением первого из этих условий приходится следить самому пользователю, то выполнение двух остальных желательно возложить на зарядное устройство. Именно такое устройство и описывается в статье.

При разработке ставилась задача сконструировать устройство, обладающее следующими характеристиками:

Широкими интервалами изменения зарядного тока и напряжения автоматического прекращения зарядки (АПЗ). обеспечивающими зарядку как отдельных аккумуляторов, применяемых для питания малогабаритной аппаратуры, так и составленных из них батарей при минимальном числе механических переключателей;
- близкими к равномерным шкалами регуляторов, позволяющими с приемлемой точностью устанавливать зарядный ток и напряжение АПЗ без каких-либо измерительных приборов;
- высокой стабильностью зарядного тока при изменении сопротивления нагрузки;
- относительной простотой и хорошей повторяемостью.

Описываемое зарядное устройство полностью отвечает этим требованиям. Оно предназначено для зарядки аккумуляторов Д-0.03. Д-0.06. Д-0.125. Д-0.26. Д-0.55. ЦНК-0,45. НКГЦ-1.8. их импортных аналогов и батарей, составленных из них. До выставленного порога включения системы АПЗ аккумулятор заряжается стабилизированным током, не зависящим от типа и числа элементов, при этом напряжение на нем по мере зарядки постепенно растет. После срабатывания системы на аккумуляторе стабильно поддерживается выставленное ранее постоянное напряжение, а зарядный ток уменьшается. Иными словами, перезарядки и разрядки аккумулятора не происходит, и он может оставаться подключенным к устройству длительное время.

Устройство можно использовать в качестве блока питания малогабаритной аппаратуры с регулируемым напряжением от 1,5 до 13 В и защитой от перегрузки и короткого замыкания в нагрузке.

Основные технические характеристики устройства следующие:

Зарядный ток на пределе "40 мА" - 0...40, на пределе "200 мА" - 40...200 мА;
- нестабильность зарядного тока при изменении сопротивления нагрузки от 0 до 40 Ом - 2.5 %;
- пределы регулирования напряжения срабатывания АПЗ - 1,45... 13 В.

Схема зарядного устройства

В качестве стабилизатора зарядного тока применен источник тока на транзисторе \Л"4. В зависимости от положения переключателя SA2 ток в нагрузке Iн определяется соотношениями: I Н = (U Б - U БЭ)/R10 и I Н = (U Б - U БЭ)/(R9 + R10), где U Б - напряжение на базе транзистора VT4 относительно плюсовой шины, В; U БЭ - падение напряжения на его эмиттерном переходе, В; R9, R10 - сопротивления соответствующих резисторов, Ом.

Из этих выражений следует, что. изменяя напряжение на базе транзистора VT4 переменным резистором R8. можно регулировать ток нагрузки в широких пределах. Напряжение на этом резисторе поддерживается неизменным стабилитроном VD6, ток через который, в свою очередь, стабилизирован полевым транзистором VT2. Все это и обеспечивает нестабильность зарядного тока, указанную в технических характеристиках. Применение источника стабильного тока, управляемого напряжением, позволило изменять зарядный ток вплоть до весьма малых значений, иметь близкую к равномерной шкалу регулятора тока (R8) и достаточно просто переключать пределы его регулирования.

Система АПЗ. срабатывающая после достижения предельно допустимого напряжения на аккумуляторе или батарее, включает в себя компаратор на ОУ DA1, электронный ключ на транзисторе VT3, стабилитрон VD5. стабилизатор тока на транзисторе VT1 и резисторах R1 - R4. Индикатором зарядки и ее окончания служит светодиод HL1.

При подключении к устройству разряженного аккумулятора напряжение на нем и неинвертирующем входе ОУ DA1 меньше образцового на инвертирующем, которое установлено переменным резистором R3. По этой причине напряжение на выходе ОУ близко к напряжению общего провода, транзистор VT3 открыт, через аккумулятор течет стабильный ток, значение которого определяется положениями движка переменного резистора R8 и переключателя SA2.

По мере зарядки аккумулятора напряжение на инвертирующем входе ОУ DA1 возрастает. Повышается напряжение и на его выходе, поэтому транзистор VT2 выходит из режима стабилизации тока, VT3 постепенно закрывается и его коллекторный ток уменьшается. Процесс продолжается до тех пор. пока стабилитрон VD6 не перестает стабилизировать напряжение на резисторах R7, R8. С понижением этого напряжения транзистор VT4 начинает закрываться и зарядный ток быстро уменьшается. Его конечное значение определяется суммой тока саморазрядки аккумулятора и тока, текущего через резистор R11. Иными словами, с этого момента на заряженном аккумуляторе поддерживается напряжение, установленное резистором R3, а через аккумулятор течет ток, необходимый для поддержания этого напряжения.

Светодиод HL1 индицирует включение устройства в сеть и две фазы процесса зарядки. При отсутствии аккумулятора на резисторе R11 устанавливается напряжение, определяемое положением движка переменного резистора R3. Для поддержания этого напряжения требуется весьма незначительный ток, поэтому HL1 светится очень слабо. В момент подключения аккумулятора яркость его свечения возрастает до максимальной, а после срабатывания системы АПЗ по окончании зарядки - скачкообразно уменьшается до средней между названными выше. При желании можно ограничиться двумя уровнями свечения (слабое, сильное), для чего достаточно подобрать резистор R6.

Детали устройства смонтированы на печатной плате, чертеж которой показан на рис. 2. Она выполнена методом прорезания фольги и рассчитана на установку постоянных резисторов МЛТ, подстроечного (проволочного) ППЗ-43. конденсаторов К52-1Б (С1) и KM (С2). Транзистор VT4 установлен на теплоотводе с эффективной площадью теплового рассеяния 100 см 2 . Переменные резисторы R3 и R8 (ППЗ-11 группы А) закреплены на передней панели устройства и снабжены шкалами с соответствующими отметками.

Переключатели SA1 и SA2 - любого типа, желательно, однако, чтобы контакты используемого в качестве SA2 были рассчитаны на коммутацию тока не менее 200 мА.

Сетевой трансформатор Т1 должен обеспечивать на вторичной обмотке переменное напряжение 20 В при токе нагрузки 250 мА.

Полевые транзисторы КПЗОЗВ можно заменить на КПЗОЗГ - КПЗОЗИ, биполярные КТ361В - на транзисторы серий КТ361. КТ3107, КТ502 с любым буквенным индексом (кроме А), а КТ814Б - на КТ814В. КТ814Г. КТ816В. КТ816Г. Стабилитрон Д813 (VD5) необходимо подобрать с напряжением стабилизации не менее 12.5 В. Вместо него допустимо использовать Д814Д или любые два соединенных последовательно маломощных стабилитрона с суммарным напряжением стабилизации 12.5... 13.5 В. Возможна замена ППЗ-11 (R3. R8) переменными резисторами любого типа группы А, а ППЗ-43 (R10) - подстроенным резистором любого типа с мощностью рассеяния не менее 3 Вт.

Налаживание устройства начинают с подбора яркости свечения светодиода HL1. Для этого переводят переключатели SA1 и SA2 соответственно в положения "13 В" и "40 мА". а движок переменного резистора R8 - в среднее, подключают к гнездам XS1 и XS2 резистор сопротивлением 50... 100 Ом и находят такое положение движка резистора R3. в котором изменяется яркость свечения HL1. Увеличения различия в яркости свечения добиваются подбором резистора R6.

Затем устанавливают границы интервалов регулирования зарядного тока и напряжения АПЗ. Подключив к выходу устройства миллиамперметр с пределом измерения 200...300 мА. переводят движок резистора R8 в нижнее (по схеме) положение, а переключатель SA2 - в положение "200 мА". Изменением сопротивления подстроечного резистора R10 добиваются отклонения стрелки прибора до отметки 200 мА. Затем перемещают движок R8 в верхнее положение и подбором резистора R7 добиваются показаний 36...38 мА. Наконец, переключают SA2 о положение "40 мА". возвращают движок переменного резистора R8 в нижнее положение и подбором R9 устанавливают выходной ток в пределах 43...45 мА.

Для подгонки границ интервала регулирования напряжения АПЗ переключатель SA1 устанавливают в положение "13 В", а к выходу устройства подключают вольтметр постоянного тока с пределом измерения 15...20 В. Подбором резисторов R1 и R4 добиваются показаний 4,5 и 13 В в крайних положениях движка резистора R3. После этого, переведя SA1 в положение "4,5 В", в тех же положениях движка R3 устанавливают стрелку прибора на отметки 1.45 и 4,5 В подбором резистора R2.

В процессе эксплуатации напряжение АПЗ устанавливают из расчета 1,4... 1,45 В на один заряжаемый аккумулятор.

Если устройство не предполагается использовать для питания радиоаппаратуры, индикацию окончания зарядки погасанием светодиода можно заменить его миганием, для чего достаточно ввести в компаратор гистерезис -дополнить устройство резисторами R12, R13 (рис. 3). а резистор R6 удалить. После такой доработки при достижении установленного значения напряжения АПЗ светодиод HL1 погаснет, а зарядный ток через аккумулятор полностью прекратится. В результате напряжение на нем начнет падать, поэтому вновь включится стабилизатор тока и загорится светодиод HL1. Иными словами, при достижении установленного напряжения HL1 начнет мигать, что иногда более наглядно, чем некая средняя яркость свечения. Характер процесса зарядки аккумулятора в обоих случаях остается неизменным.

В настоящее время широко применяются устройства, для автоматической зарядки с аккумуляторов напряжением 6 и 12 В. Опыт эксплуатации аккумуляторов показываете т целесообразность раздельной и независимой зарядки аккумуляторных элементов с напряжением 1.25 В каждый. Действительно, в природе нет абсолютно одинаковых по параметрам аккумуляторов. Даже аккумуляторы одной серии и партии отличаются друг от друга, особенно через некоторое время. Индивидуальная зарядка позволяет наиболее полно восстановить ёмкость каждого аккумулятора. Только за счёт индивидуальной зарядки аккумуляторных элементов срок их эксплуатации возрастает на 50... 100%. Приводиться схема доработанного зарядного устройства. Другое отличие от аналогичных схем использование двух компараторов вместо четырех. Казалось бы, для этого достаточно включить света диоды индикации режима непосредственно с выходов компараторов на корпус. Однако сразу же возникают проблемы: напряжение на выходе компараторов при работе изменяется от нулевого во время зарядки аккумуляторов до половины напряжения источника питания микросхем в режиме ожидания заряда. При этом естественно, ток заряда, аккумуляторов полностью не прекращается, а только незначительно уменьшается. Замена микросхемы на аналогичную или подбор не приводят к устранению этого явления. Задачу удалось решить, изменив схему включения светодиода, ожидания даже при использовании в схеме слаботочных компараторов. Упростилась и схема зарядного устройства: вместо микросхемы счетверенного: компаратора LT339 применено менее дефицитная и белее дешевая микросхема сдвоенного компаратора LTЗ93. При желании радиолюбители могут попробовать использовать микросхемы бытовых сдвоенных операционных усилителей, например, серии 1458 или К157УД2. Компараторы напряжения DA1.1 и DA1.2 управляют работой зарядных устройств. Напряжение на инвертирующих входах компараторов является эталонным для схемы и выставляется при настройке подстроечным резистором R3. диоды VD5 и VD10 защищают микросхему DA1 при ошибочном подключении к устройству аккумуляторов в противоположной полярности. Если напряжение подключаемого аккумулятора меньше чем опорного напряжения инвертирующего входа компаратора, то на выходе компаратора устанавливается низкий потенциал – около 0,18 В. При этом через резистор R9 (R14) и стабилитрон VD6 (VD12) отпирается VТ1 (VT2). Зажигается светодиод VD7 (VD15) зелёного цвета свечения, одновременно стабилизируя напряжение на базе транзистора. Резистор R11 (R17) в цепи эмиттера транзистора обеспечивают работу ключа в режиме стабилизации тока. Подбирая сопротивление этого резистора при настройке схемы, можно задать необходимый для данного типа аккумулятора ток заряда. Диод VD8 (VD16) в цепи коллектора транзистора VT1(VT2) препятствует разряду аккумулятора при отключении зарядного устройства от сети или перебоях электропитания. Как только аккумулятор зарядиться, возрастёт напряжение на инвертирующем входе компаратора, и он переключиться. Зелёный светодиод гаснет, а красный светодиод VD11(VD13) зажигается. Это происходит из-за того, что напряжение на выходе компаратора скачком возрастает почти до напряжения источника питания. Поскольку микросхемы компараторов маломощные, из-за нагрузки напряжение на их выходе возрастает не до напряжения питания микросхем, а менее этой величины на 1,5…2 В. При отсутствии стабилитронов VD6, VD14 это привело бы к неполному запиранию транзисторов VT1, VT2 и наличию существенного тока дозаряда аккумуляторов. Резисторы R7, R12 обеспечивают гистерезис переключения компараторов. При увеличении сопротивлений гистерезис уменьшается. В режиме заряде аккумуляторов выходное сопротивление микросхем компараторов DA1 через диоды VD9,VD12 шунтируют светодиоды VD11,VD13, и они не светятся. Как только аккумулятор зарядиться и компаратор перейдёт в другое устойчивое состояние, напряжение на выходе компараторе скачком возрастает, красный светодиод уже не шунтируется и начинает светиться. Настройку устройства проще всего осуществить по следующей методике. К зарядному устройству подключают предварительно полностью заряженный аккумулятор. Регулируя сопротивление подстроечного резистора R3, добиваются зажигания красного светодиода. Если теперь подключить разряженный аккумулятор, то красный светодиод погаснет, а зелёный загорится. Подбирая сопротивление резисторов R11 и R17, устанавливают необходимый ток заряда аккумуляторов, который, как правило, выбирают равным по величине 0,1 ёмкости аккумулятора. Ток, для аккумуляторов ёмкостью 0,6 Ач был установлен около 60 мА. В качестве R3 целесообразно использовать многооборотный подстроечный резистор типа С15-2. Его сопротивление не критично. Транзисторы VT1, VT2 в авторском варианте установлены на небольшие радиаторы.

Радиоаматор №1 2006г стр. 25

При длительном хранении и неправильной эксплуатации на пластинах появляются крупные нерастворимые кристаллы сульфата свинца. Большинство современных выполнены по простой схеме, в которую входит трансформатор и выпрямитель. Их использование рассчитано на снятие рабочей сульфитации с поверхности пластин аккумулятора, но застарелую крупнокристаллическую сульфитацию они убрать не в состоянии.Характеристики устройства Напряжение аккумулятора, 12В Емкость, А-ч 12-120Время измерения, с 5Импульсный ток измерения, А 10Диагностируемая степень сульфатации, %30. Регулятор мощности на тс122 25 ..100Масса устройства, г 240Рабочая температура воздуха, ±27°Ссталлы сульфата свинца обладают большим сопротивлением, что препятствует прохождению зарядного и разрядного тока. Напряжение на аккумуляторе во пора зарядки растет, ток заряда падает, а обильное выделение смеси кислорода и водорода может привести к взрыву. Разработанные импульсные зарядные устройства способны во пора зарядки перевести сульфат свинца в аморфный свинец с последующим его осаждением на поверхность очищенных от кристаллизации пластин.Исходя из значения напряжения под нагрузкой, резистором R14 устанавливается соответствующее роль сульфитации в процентах на шкале прибора РА1 при среднем положении дви...

Для схемы "Немного об ускоренной зарядке"

В последнее час в продаже появилось большое количество различных (ЗУ). Многие из них обеспечивают зарядный ток. численно равный 1/10 от емкости аккумулятора. Зарядка при этом длится12. ..18 часов, что многих прямо не устраивает. Для удовлетворения требований рынка разработаны "ускоренные" зарядные устройства.Например, ЗУ "FOCUSRAY". модель 85 (рис.1), представляет собой автоматическое зарядное устройство для ускоренной зарядки, смонтированное в корпусе с сетевой вилкой и позволяющее заряжать одновременно два аккумулятора типа 6F22 ("Ника") или четыре NiCd или NiMH аккумулятора типоразмеров AAA или АА (316) током до 1000 мА. На корпусе ЗУ, напротив каждого аккумуляторного гнезда, в кассете имеется свой светодиод. индицирующий режим работы ЗУ. При отсутствии аккумулятора он не светится, при зарядке - мигает, по окончании зарядки светит постоянно.Естественно, наиболее полноценная работа батареи происходит тогда, когда аккумуляторы одинаковые. Описание микросхемы 0401 При этом заряд и разряд происходят одновременно, и полностью используется их ресурс как источника питания. На практике такая идеальная ситуация почти не встречается, и приходится либо подбирать аккумуляторы для батареи, пользуясь приборами, либо "приучать" аккумуляторы к совместной работе. Для этого необходимо:- взять однотипные аккумуляторы с одинаковой емкостью и, желательно, из одной партии; - зарядить их и полностью разрядить на реальную нагрузку; - повторить заряд-разряд в составе батареи несколько раз, т.е. произвести ее "формовку".Подогнать аккумуляторы приятель к другу можно и при индивидуальной зарядке. Установив аккумуляторы в держатели батарейного отсека ЗУ. включае...

Для схемы "Автоматическое ЗУ для малогабаритных аккумуляторов"

Разработанное автоматическое зарядное устройство (АЗУ) позволяет заряжать малогабаритные аккумуляторы МРЗ-плееров. цифровых фотокамер, фонарей и т.д. от сети. Применение ею позволяет отказаться от нескольких и производить полную разрядку с поставленной задачей устранения "эффекта памяти", которым обладают просторно распространенные никель-кадмиевые (Ni-Cd) аккумуляторы. АЗУ реализует патент РФ на полезную модель №49900 от 04.08.2006 г. Прототипом для него послужило зарядное устройство из .Основные особенности АЗУ обеспечиваются применением интегральной микросхемы TL431 (регулируемого стабилитрона) и использованием генератора переменного тока на основе реактивного элемента (в данном варианте - конденсатора). АЗУ обеспечивает зарядку "пальчиковых" аккумуляторов типоразмеров AAA и АА стабильным током 155 мА от сети (220 8, 50 Гц). Схема терморегулятора на симисторе Оно может использоваться и при меньших значениях напряжения сети с пропорциональным уменьшением зарядного тока. Стабильность зарядного тока всецело определяется стабильностью рис.1 питающего АЗУ переменного напряжения.В начале заряда батареи аккумуляторов светится сигнальный светодиод, перед окончанием зарядки он начинает мигать, а потом полностью выключается. АЗУ обеспечивает автоматическое снижение зарядного тока (не менее, чем на порядок) при достижении ЭДС заряженной батареи и световую индикацию этого режима.В автономном режиме работы (без подключения к сети) производится автоматический разряд аккумулятора до напряжения приблизительно 0,6 В со световой индикацией процесса. При полностью заряженном аккумуляторе такой разряд начинается с тока примерно 200 мА.Разряд всей батареи аккумуляторов нерационален, т.к. может усугублять не идентичность составляющих ее аккумуляторов.Схема АЗУ показана на рис.1. Устройство содержит:- токоограни...

Для схемы "Зарядное устройство для малогабаритных элементов"

ЭлектропитаниеЗарядное устройство для элементовВ. БОНДАРЕВ, А. РУКАВИШНИКОВ г. МоскваМалогабаритные элементы СЦ-21, СЦ-31 и другие используются, например, в современных электронных наручных часах. Для их подзарядки и частичного восстановления работоспособности, а значит, продления срока службы, можно применить предлагаемое зарядное устройство (рис. 1). Оно обеспечивает ток зарядки 12 мА, достаточный для "обновления" элемента через 1,5...3 часа после подключения к устройству. рис. 1 На диодной матрице VD1 выполнен выпрямитель, на который подается сетевое напряжение через ограничительный резистор R1 и конденсатор С1. Резистор R2 способствует разрядке конденсатора после отключения устройства от сети. На выходе выпрямителя стоит сглаживающий конденсатор С2 и стабилитрон VD2, ограничивающий выпрямленное напряжение на уровне 6,8 В. Далее следуют источник зарядного тока, выполненный на резисторах R3, R4 и транзисторах VT1-VT3, и сигнализатор окончания зарядки, состоящий из транзистора VT4 и светодиода HL).Как только напряжение на заряжаемом элементе возрастет до 2,2 В, часть коллекторного тока транзистора VT3 потечет через цепь индикации. Дроздов схемы трансиверов Зажжется светодиод HL1 и просигнализирует об окончании цикла зарядки.Вместо транзисторов VT1, VT2 можно использовать два последовательно включенных диода с прямым напряжением 0,6 В и обратным напряжением более 20 В каждый, вместо VT4 - один такой диод, а вместо диодной матрицы - любые диоды на обратное напряжение не менее 20 В и выпрямленный ток более 15 мА. Светодиод может быть любой прочий, с постоянным прямым напряжением приблизительно 1,6 В. Конденсатор С1 - бумажный, на номинальное напряжение не ниже 400 В, оксидиый конденсатор С2-К73-17 (можно К50-6 на напряжение не ниже 15 В).Детали устройства смонтированы на печатной п...

Для схемы "Применение интегрального таймера для автоматического контроля напряж"

ЭлектропитаниеПрименение интегрального таймера для автоматического контроля напряжения при зарядке МакгоуэнФирма Stoelting Co. (Чикаго, шт. Иллинойс)На основе интегрального таймера типа 555 можно собрать автоматическое зарядное устройство для аккумуляторных батарей. Назначением такого зарядного устройства является поддержание в полностью заряженном состоянии резервной аккумуляторной батареи для питания какого-либо измерительного устройства. Такая батарея постоянно остается подключенной к сети переменного тока независимо от того, используется она в в данный момент для питания устройства или нет. В автоматическом зарядном устройстве из состава интегрального таймера используются оба компаратора, логический триггер и мощный выходной усилитель.Опорный стабилитрон D1 при посредстве внутреннего резистивного делителя, имеющегося в ИС таймера, подает опорные напряжения на оба компаратора. Укв схема Напряжение на выходе таймера (вывод 3) переключается между уровнями 0 и 10 В.При калибровке схемы вместо батареи никель-кадмиевых аккумуляторов включают регулируемый источник напряжения постоянного тока. Потенциометр "Выключение" устанавливают на требуемое конечное напряжение зарядки батареи (обычно 1,4 В на элемент), в потенциометр "Включение" - на требуемое начальное напряжение зарядки (обычно 1,3 В на элемент).Резистор R1 сдерживает рабочий ток на уровне менее 200 мА при любых условиях. Диод D2 предотвращает разряд батареи через таймер, когда последний пребывает в сос...

Для схемы "Малогабаритный простой блок питания"

Описанный ниже блок питания можно использовать для переносных и радиотехнических (радиоприемников, магнитол, магнитофонов и др.). Технические данные: Выходное напряжение - 6 или 9 В Максимальный ток нагрузки - 250 мА Блок питания имеет параметрический стабилизатор тока и компенсационный стабилизатор напряжения. Поэтому он не боится короткого замыкания по выходу, и выходной транзистор стабилизатора практически не может вылезти из строя. Схема блока питания показана на рисунке. Параметрический стабилизатор тока включает в себя цепочку R1C1 и первичную обмотку трансформатора Т1. Компенсационный стабилизатор напряжения собран на элементах R2, VT1, VD2, VD3, VD4. Работа схем неоднократно описывалась в литературе и в этом месте не приводится. Светодиод VD5 (красного цвета) с балластным сопротивлением R3 служит для индикации работоспособности блока питания. Детали: С1 - любой малогабаритный бумажный с номиналом 0,25 мкФ х 680 В; С2, СЗ - 1000 мкФ х 16 В; VD1 - КЦ407А; VD2 - Д18; VD3 - КС139А; VD4 - КС156А; VD5 - АЛ307А, Б; VT1 - КТ805АМ; Т1 - магнитопровод Ш12 х 18, первичная обмотка 2300 витков проводом ПЭВ-0,1, вторичная - 155 витков проводом ПЭВ-0,35. Блок питания умещается в корпус-вилку от импортного адаптера. О.Г. Рашитов, г.Киев...

Для схемы "Зарядное устройство для 3-6-вольтовых аккумуляторов"

Предлагаемое зарядное устройство разработано для зарядки стабильным током в первую очередь шахтерских аккумуляторов, именуемых в народе "коногонкой". Саморазряд у этих очень большой. А это означает, что уже через месяц, более того без нагрузки тот самый аккумулятор надобно заряжать. Устройство несложно доработать и для зарядки 12-вольтовых аккумуляторов, подходит оно (без доработки) и для зарядки 6-вольтовых аккумуляторов. Схема зарядного устройства очень проста (см. рисунок). Выпрямитель и трансформатор на схеме не показаны. Вторичная обмотка обеспечивает ток в нагрузке более 3 А при напряжении 12 В. Выпрямитель мостового типа на диодах Д242А, фильтрующий конденсатор - 2000 мкФх50 В (К50-6). Полевой транзистор типа КП302Б (2П302Б, КП302БМ) с начальным током стока 20-30 мА. Стабилитрон VD1 типа Д818 (Д809). Транзистор типа КТ825 с любой буквой. Его можно сменить схемой Дарлингтона, например, КТ818А и КТ814А и т.д. Реле поворотов на тиристоре схемы Резистор R1 типа МЛТ-0,25; резистор R2 типа ППЗ-14, но полностью подойдет и с графитовым покрытием; R3 - проволочный (нихром - 0,056 Ом/см). Транзистор VT2 размещен на ребристом теплоотводе с охлаждающей поверхностью приблизительно 700 см. Электролитический конденсатор С1 любого типа. Конструктивно схема выполнена на печатной плате, расположенной вблизи транзистора VT2. Чтобы заряжать и 12-вольтовые аккумуляторы, следует предусмотреть вероятность увеличения на 6 В переменного напряжения на вторичной обмотке сетевого транзистора зарядного устройства. Данную схему использовали так же, как приставку к блоку питания (подойдет и не стабилизированный источник напряжения). Достоинство данной схемы - не боится коротких замыканий по выходу, поскольку представляет собой фактически генератор стабильного тока. Величина этого тока зависит в первую очередь от смещения, которое устанав...

ЭлектропитаниеВыпрямители с электронным регулятором для зарядки Выпрямитель (рис. 1) собран по мостовой схеме на четырех диодах Д1 - Д4 типа Д305. Регулирование силы зарядного тока производится. при помощи мощного транзистора Т1 включенного по схеме составного триода. При изменении смещения, снимаемого на базу триода с потенциометра R1, изменяется сопротивление цепи коллектор-эмиттер транзистора. Зарядный ток при этом можно изменять от 25 ма до 6 а при напряжении на выходе выпрямителя от 1,5 до 14 в.Puc.1Резистор R2 на выходе выпрямителя позволяет устанавливать выходное напряжение выпрямителя при отключенной нагрузке. Трансформатор собран на сердечнике сечением 6 см квд. Первичная обмотка рассчитана на включение в сеть с напряжением 127 в (выводы 1-2) или 220 в (1-3) и содержит 350+325 витков провода ПЭВ 0,35, вторичная - 45 витков провода ПЭВ 1,5. Т160 схема регулятора тока аккумуляторов переключатель устанавливается в положение 1, 12-вольтовых - в положение 2.Puc.2Обмотки трансформатора содержат следующее количе...

Для схемы "Выпрямители с электронным регулятором для зарядки аккумуляторов"

Автомобильная электроникаВыпрямители с электронным регулятором для зарядки Выпрямитель (рис. 1) собран по мостовой схеме на четырех диодах Д1 - Д4 типа Д305. Регулирование силы зарядного тока производится. при помощи мощного транзистора Т1 включенного по схеме составного триода. При изменении смещения, снимаемого на базу триода с потенциометра R1, изменяется сопротивление цепи коллектор-эмиттер транзистора. Зарядный ток при этом можно изменять от 25 ма до 6 а при напряжении на выходе выпрямителя от 1,5 до 14 в.Puc.1Резистор R2 на выходе выпрямителя позволяет устанавливать выходное напряжение выпрямителя при отключенной нагрузке. Трансформатор собран на сердечнике сечением 6 см квд. Первичная обмотка рассчитана на включение в сеть с напряжением 127 в (выводы 1-2) или 220 в (1-3) и содержит 350+325 витков провода ПЭВ 0,35, вторичная - 45 витков провода ПЭВ 1,5. Структурная схема микросхемы 251 1НТ Транзистор T1 устанавливают на металлическом радиаторе, площадь поверхности радиатора должна быть не менее 350 см.кв. Поверхность учитывается с обеих сторон пластины при толщине ее не менее 3 мм. Б. ВАСИЛЬЕВ Схема, приведенная на рис. 2, отличается от предыдущей тем, что с поставленной задачей увеличения максимального тока до 10 о транзисторы T1 и Т2 включены параллельно. Смещение на базы транзисторов, изменением которого регулируется зарядный ток, снимается с выпрямителя, выполненного на диодах Д5 - Д6. При зарядке 6-вольтовых аккумуляторов переключатель устанавливается в положение 1, 12-вольтовых - в положение 2.Puc.2Обмотки трансформатора содержат следу...

Для схемы "ПРОСТЫЕ ЧМ-РАДИОМИКРОФОНЫ"

РадиошпионПРОСТЫЕ ЧМ-РАДИОМИКРОФОНЫРадиомикрофоны с частотной модуляцией (ЧМ) обычно довольно сложны. Так, в ЧМ-радиомикрофоне сигнал от электродинамического микрофона усиливается операционным усилителем, после чего поступает на базу транзистора высокочастотного генератора. осуществляя тем самым смешанную амплитудно-частотную модуляцию. Puc.1Значительно упростить конструкцию ЧМ радиомикрофона можно при использовании малогабаритных конденсаторных микрофонов, включаемых непосредственно в колебательный контур высокочастотного генератора. Варианты возможных схем с таким включением приведены на рис.1-3.Puc.2Как понятно, конденсаторный микрофон выполнен в виде развернутого конденсатора с двумя плоскими неподвижными электродами, параллельно которым закреплена мембрана (тонкая фольга, металлизированная диэлектрическая пленка и т.п.), электрически изолированная от неподвижных электродов Выступая элементом контура генератора, он, таким образом, осуществляет частотную модуляцию.Puc.3Мощность ЧМ-радиомикрофонов составляет долиединицы мВт для схемы на рис.1, единицы-десятки мВт для схемы на рис. Радомкрофон схеми 2 и десяткисотни (при наличии радиаторов) мВт для схемы на рис.3. Радиус действия, соответственно, изменяется от десятков метров до нескольких километров - при использовании ЧМ-радиоприемников с чувствительностью не менее 10 мкВ/м. Параметры катушек индуктивности аналогичны приведенным в .Литература 1. Ридкоус В. ЧМ радиомикрофон. - Радиолюбитель. -1991, N4, с. 22-23.М.ШУСТОВ, г.Томск(РЛ 9/91)...

Кто не сталкивался в своей практике с необходимостью зарядки батареи и, разочаровавшись в отсутствии зарядного устройства с необходимыми параметрами, вынужден был приобретать новое ЗУ в магазине, либо собирать вновь нужную схему?
Вот и мне неоднократно приходилось решать проблему зарядки различных аккумуляторных батарей, когда под рукой не оказывалось подходящего ЗУ. Приходилось на скорую руку собирать что-то простое, применительно к конкретному аккумулятору.

Ситуация была терпимой до того момента, пока не появилась необходимость в массовой подготовке и, соответственно, зарядке батарей. Понадобилось изготовить несколько универсальных ЗУ - недорогих, работающих в широком диапазоне входных и выходных напряжений и зарядных токов.

Предлагаемые ниже схемы ЗУ были разработаны для зарядки литий-ионных аккумуляторов, но существует возможность зарядки и других типов аккумуляторов и составных батарей (с применением однотипных элементов, далее - АБ).

Все представленные схемы имеют следующие основные параметры:
входное напряжение 15-24 В;
ток заряда (регулируемый) до 4 А;
выходное напряжение (регулируемое) 0,7 - 18 В (при Uвх=19В).

Все схемы были ориентированы на работу с блоками питания от ноутбуков либо на работу с другими БП с выходными напряжениями постоянного тока от 15 до 24 Вольт и построены на широко распространенных компонентах, которые присутствуют на платах старых компьютерных БП, БП прочих устройств, ноутбуков и пр.

Схема ЗУ № 1 (TL494)


ЗУ на схеме 1 является мощным генератором импульсов, работающим в диапазоне от десятков до пары тысяч герц (частота варьировалась при исследованиях), с регулируемой шириной импульсов.
Зарядка АБ производится импульсами тока, ограниченного обратной связью, образованной датчиком тока R10, включенным между общим проводом схемы и истоком ключа на полевом транзисторе VT2 (IRF3205), фильтром R9C2, выводом 1, являющимся «прямым» входом одного из усилителей ошибки микросхемы TL494.

На инверсный вход (вывод 2) этого же усилителя ошибки подается регулируемое посредством переменного резистора PR1, напряжение сравнения с встроенного в микросхему источника опорного напряжения (ИОН - вывод 14), меняющего разность потенциалов между входами усилителя ошибки.
Как только величина напряжения на R10 превысит значение напряжения (установленного переменным резистором PR1) на выводе 2 микросхемы TL494, зарядный импульс тока будет прерван и возобновлен вновь лишь при следующем такте импульсной последовательности, вырабатываемой генератором микросхемы.
Регулируя таким образом ширину импульсов на затворе транзистора VT2, управляем током зарядки АБ.

Транзистор VT1, включенный параллельно затвору мощного ключа, обеспечивает необходимую скорость разрядки затворной емкости последнего, предотвращая «плавное» запирание VT2. При этом амплитуда выходного напряжения при отсутствии АБ (или прочей нагрузки) практически равна входному напряжению питания.

При активной нагрузке выходное напряжение будет определяться током через нагрузку (её сопротивлением), что позволит использовать эту схему в качестве драйвера тока.

При заряде АБ напряжение на выходе ключа (а, значит, и на самой АБ) в течении времени будет стремиться в росте к величине, определяемой входным напряжением (теоретически) и этого, конечно, допустить нельзя, зная, что величина напряжения заряжаемого литиевого аккумулятора должна быть ограничена на уровне 4,1 В (4,2 В). Поэтому в ЗУ применена схема порогового устройства, представляющего из себя триггер Шмитта (здесь и далее - ТШ) на ОУ КР140УД608 (IC1) или на любом другом ОУ.

При достижении необходимого значения напряжения на АБ, при котором потенциалы на прямом и инверсном входах (выводы 3, 2 - соответственно) IC1 сравняются, на выходе ОУ появится высокий логический уровень (практически равный входному напряжению), заставив зажечься светодиод индикации окончания зарядки HL2 и светодиод оптрона VH1 который откроет собственный транзистор, блокирующий подачу импульсов на выход U1. Ключ на VT2 закроется, заряд АБ прекратится.

По окончании заряда АБ он начнет разряжаться через встроенный в VT2 обратный диод, который окажется прямовключенным по отношению к АБ и ток разряда составит приблизительно 15-25 мА с учетом разряда кроме того через элементы схемы ТШ. Если это обстоятельство кому-то покажется критичным, в разрыв между стоком и отрицательным выводом АБ следует поставить мощный диод (лучше с малым прямым падением напряжения).

Гистерезис ТШ в этом варианте ЗУ выбран таким, что заряд вновь начнется при понижении величины напряжения на АБ до 3,9 В.

Это ЗУ можно использовать и для заряда последовательно соединенных литиевых (и не только) АБ. Достаточно откалибровать с помощью переменного резистора PR3 необходимый порог срабатывания.
Так, например, ЗУ, собранный по схеме 1, функционирует с трехсекционной последовательной АБ от ноутбука, состоящей из сдвоенных элементов, которая была смонтирована взамен никель-кадмиевой АБ шуруповерта.
БП от ноутбука (19В/4,7А) подключен к ЗУ, собранному в штатном корпусе ЗУ шуруповерта взамен оригинальной схемы. Зарядный ток «новой» АБ составляет 2 А. При этом транзистор VT2, работая без радиатора нагревается до температуры 40-42 С в максимуме.
ЗУ отключается, естественно, при достижении напряжения на АБ=12,3В.

Гистерезис ТШ при изменении порога срабатывания остается прежним в ПРОЦЕНТНОМ отношении. Т.е., если при напряжении отключения 4,1 В, повторное включение ЗУ происходило при снижении напряжения 3,9 В, то в данном случае повторное включение ЗУ происходит при снижении напряжения на АБ до 11,7 В. Но при необходимости глубину гистерезиса можно изменить.

Калибровка порога и гистерезиса зарядного устройства

Калибровка происходит при использовании внешнего регулятора напряжения (лабораторного БП).
Выставляется верхний порог срабатывания ТШ.
1. Отсоединяем верхний вывод PR3 от схемы ЗУ.
2. Подключаем «минус» лабораторного БП (далее везде ЛБП) к минусовой клемме для АБ (самой АБ в схеме во время настройки быть не должно), «плюс» ЛБП - к плюсовой клемме для АБ.
3. Включаем ЗУ и ЛБП и выставляем необходимое напряжение (12,3 В, например).
4. Если горит индикация окончания заряда, вращаем движок PR3 вниз (по схеме) до гашения индикации (HL2).
5. Медленно вращаем движок PR3 вверх (по схеме) до зажигания индикации.
6. Медленно снижаем уровень напряжения на выходе ЛБП и отслеживаем значение, при котором индикация вновь погаснет.
7. Проверяем уровень срабатывания верхнего порога еще раз. Хорошо. Можно настроить гистерезис, если не устроил уровень напряжения, включающий ЗУ.
8. Если гистерезис слишком глубок (включение ЗУ происходит при слишком низком уровне напряжения - ниже, например, уровня разряда АБ, выкручиваем движок PR4 влево (по схеме) или наоборот, - при недостаточной глубине гистерезиса, - вправо (по схеме). При изменении глубины гистерезиса уровень порога может сместиться на пару десятых долей вольта.
9. Сделайте контрольный прогон, поднимая и опуская уровень напряжения на выходе ЛБП.

Настройка токового режима еще проще.
1. Отключаем пороговое устройство любыми доступными (но безопасными) способами: например, «посадив» движок PR3 на общий провод устройства или «закорачивая» светодиод оптрона.
2. Вместо АБ подключаем к выходу ЗУ нагрузку в виде 12-вольтовой лампочки (например, я использовал для настройки пару 12V ламп на 20 Вт).
3. Амперметр включаем в разрыв любого из проводов питания на входе ЗУ.
4. Устанавливаем на минимум движок PR1 (максимально влево по схеме).
5. Включаем ЗУ. Плавно вращаем ручку регулировки PR1 в сторону роста тока до получения необходимого значения.
Можете попробовать поменять сопротивление нагрузки в сторону меньших значений ее сопротивления, присоединив параллельно, скажем, ещё одну такую же лампу или даже «закоротить» выход ЗУ. Ток при этом не должен измениться значительно.

В процессе испытаний устройства выяснилось, что частоты в диапазоне 100-700 Гц оказались оптимальными для этой схемы при условии использования IRF3205, IRF3710 (минимальный нагрев). Так как TL494 используется неполно в этой схеме, свободный усилитель ошибки микросхемы можно использовать, например, для работы с датчиком температуры.

Следует иметь в виду и то, что при неправильной компоновке даже правильно собранное импульсное устройство будет работать некорректно. Поэтому не следует пренебрегать опытом сборки силовых импульсных устройств, описанном в литературе неоднократно, а именно: все одноименные «силовые» соединения следует располагать на кратчайшем расстоянии относительно друг друга (в идеале - в одной точке). Так, например, точки соединения такие, как коллектор VT1, выводы резисторов R6, R10 (точки соединения с общим проводом схемы), вывод 7 U1 - следует объединить практически в одной точке либо посредством прямого короткого и широкого проводника (шины). То же касается и стока VT2, вывод которого следует «повесить» непосредственно на клемму "-" АБ. Выводы IC1 также должны находиться в непосредственной «электрической» близости к клеммам АБ.

Схема ЗУ № 2 (TL494)


Схема 2 не сильно отличается от схемы 1, но если предыдущая версия ЗУ была придумана для работы с АБ шуруповерта, то ЗУ на схеме 2 задумывалось, как универсальное, малогабаритное (без лишних элементов настройки), рассчитанное для работы как с составными, последовательно включенными элементами числом до 3-х, так и с одиночными.

Как видно, для быстрой смены токового режима и работы с разным количеством последовательно соединенных элементов, введены фиксированные настройки с подстроечными резисторами PR1-PR3 (установка тока), PR5-PR7 (установка порога окончания зарядки для разного количества элементов) и переключателей SA1 (выбор тока зарядки) и SA2 (выбор количества заряжаемых элементов АБ).
Переключатели имеют по два направления, где вторые их секции переключают светодиоды индикации выбора режима.

Ещё одно отличие от предыдущего устройства - использование второго усилителя ошибки TL494 в качестве порогового элемента (включенного по схеме ТШ), определяющего окончание зарядки АБ.

Ну, и, конечно, в качестве ключа использован транзистор р-проводимости, что упростило полное использование TL494 без применения дополнительных компонентов.

Методика настройки порогов окончания зарядки и токовых режимов такая же , как и для настройки предыдущей версии ЗУ. Разумеется, для разного количества элементов, порог срабатывания будет меняться кратно.

При испытании этой схемы был замечен более сильный нагрев ключа на транзисторе VT2 (при макетировании использую транзисторы без радиатора). По этой причине следует использовать другой транзистор (которого у меня просто не оказалось) соответствующей проводимости, но с лучшими токовыми параметрами и меньшим сопротивлением открытого канала, либо удвоить количество указанных в схеме транзисторов, включив их параллельно с раздельными затворными резисторами.

Использование указанных транзисторов (в «одиночном» варианте) не критично в большинстве случаев, но в данном случае размещение компонентов устройства планируется в малогабаритном корпусе с использованием радиаторов малого размера или вовсе без радиаторов.

Схема ЗУ № 3 (TL494)


В ЗУ на схеме 3 добавлено автоматическое отключение АБ от ЗУ с переключением на нагрузку. Это удобно для проверки и исследования неизвестных АБ. Гистерезис ТШ для работы с разрядом АБ следует увеличить до нижнего порога (на включение ЗУ), равного полному разряду АБ (2,8-3,0 В).

Схема ЗУ № 3а (TL494)


Схема 3а - как вариант схемы 3.

Схема ЗУ № 4 (TL494)


ЗУ на схеме 4 не сложнее предыдущих устройств, но отличие от предыдущих схем в том, что АБ здесь заряжается постоянным током, а само ЗУ является стабилизированным регулятором тока и напряжения и может быть использовано в качестве модуля лабораторного источника питания, классически построенного по «даташитовским» канонам.

Такой модуль всегда пригодится для стендовых испытаний как АБ, так и прочих устройств. Имеет смысл использование встроенных приборов (вольтметр, амперметр). Формулы расчета накопительных и помеховых дросселей описаны в литературе. Скажу лишь, что использовал готовые различные дроссели (с диапазоном указанных индуктивностей) при испытаниях, экспериментируя с частотой ШИМ от 20 до 90 кГц. Особой разницы в работе регулятора (в диапазоне выходных напряжений 2-18 В и токов 0-4 А) не заметил: незначительные изменения в нагреве ключа (без радиатора) меня вполне устраивали. КПД, однако, выше при использовании меньших индуктивностей.
Лучше всего регулятор работал с двумя последовательно соединенными дросселями 22 мкГн в квадратных броневых сердечниках от преобразователей, интегрированных в материнские платы ноутбуков.

Схема ЗУ № 5 (MC34063)


На схеме 5 вариант ШИ-регулятора с регулировкой тока и напряжения выполнена на микросхеме ШИМ/ЧИМ MC34063 с «довеском» на ОУ CA3130 (возможно использование прочих ОУ), с помощью которого осуществляется регулировка и стабилизация тока.
Такая модификация несколько расширила возможности MC34063 в отличии от классического включения микросхемы позволив реализовать функцию плавной регулировки тока.

Схема ЗУ № 6 (UC3843)


На схеме 6 - вариант ШИ-регулятора выполнен на микросхеме UC3843 (U1), ОУ CA3130 (IC1), оптроне LTV817. Регулировка тока в этом варианте ЗУ осуществляется с помощью переменного резистора PR1 по входу токового усилителя микросхемы U1, выходное напряжение регулируется с помощью PR2 по инвертирующему входу IC1.
На «прямом» входе ОУ присутствует «обратное» опорное напряжение. Т.е., регулирование производится относительно "+" питания.

В схемах 5 и 6, при экспериментах использовались те же наборы компонентов (включая дроссели). По результатам испытаний все перечисленные схемы мало в чем уступают друг другу в заявленном диапазоне параметров (частота/ток/напряжение). Поэтому схема с меньшим количеством компонентов предпочтительнее для повторения.

Схема ЗУ № 7 (TL494)


ЗУ на схеме 7 задумывалось, как стендовое устройство с максимальной функциональностью, потому и по объему схемы и по количеству регулировок ограничений не было. Данный вариант ЗУ так же выполнен на базе ШИ-регулятора тока и напряжения, как и вариант на схеме 4.
В схему введены дополнительно режимы.
1. «Калибровка - заряд» - для предварительной установки порогов напряжения окончания и повтора зарядки от дополнительного аналогового регулятора.
2. «Сброс» - для сброса ЗУ в режим заряда.
3. «Ток - буфер» - для перевода регулятора в токовый или буферный (ограничение выходного напряжения регулятора в совместном питании устройства напряжением АБ и регулятора) режим заряда.

Применено реле для коммутации батареи из режима «заряд» в режим «нагрузка».

Работа с ЗУ аналогична работе с предыдущими устройствами. Калибровка осуществляется переводом тумблера в режим «калибровка». При этом контакт тумблера S1 подключает пороговое устройство и вольтметр к выходу интегрального регулятора IC2. Выставив необходимое напряжение для предстоящей зарядки конкретной АБ на выходе IC2, с помощью PR3 (плавно вращая) добиваются зажигания светодиода HL2 и, соответственно, срабатывания реле К1. Уменьшая напряжение на выходе IC2, добиваются гашения HL2. В обоих случаях контроль осуществляется встроенным вольтметром. После установки параметров срабатывания ПУ, тумблер переводится в режим заряда.

Схема № 8

Применения калибровочного источника напряжения можно избежать, используя для калибровки собственно ЗУ. В этом случае следует отвязать выход ТШ от ШИ-регулятора, предотвратив его выключение при окончании заряда АБ, определяемым параметрами ТШ. АБ так или иначе будет отключена от ЗУ контактами реле К1. Изменения для этого случая показаны на схеме 8.


В режиме калибровки тумблер S1 отключает реле от плюса источника питания для предотвращения неуместных срабатываний. При этом работает индикация срабатывания ТШ.
Тумблер S2 осуществляет (при необходимости) принудительное включение реле К1 (только при отключенном режиме калибровки). Контакт К1.2 необходим для смены полярности амперметра при переключении батареи на нагрузку.
Таким образом однополярный амперметр будет контролировать и ток нагрузки. При наличии двухполярного прибора, этот контакт можно исключить.

Конструкция зарядного устройства

В конструкциях желательно в качестве переменных и подстроечных резисторов использование многооборотных потенциометров во избежании мучений при установке необходимых параметров.


Варианты конструктива приведены на фото. Схемы распаивались на перфорированных макетных платах экспромтом. Вся начинка смонтирована в корпусах от ноутбучных БП.
В конструкциях использовались (они же использовались и в качестве амперметров после небольшой доработки).
На корпусах смонтированы гнезда для внешнего подключения АБ, нагрузки, джек для подключения внешнего БП (от ноутбука).

Сконструировал несколько, различных по функционалу и элементной базе, цифровых измерителей длительности импульсов.

Более 30-ти рацпредложений по модернизации узлов различного профильного оборудования, в т.ч. - электропитающего. С давних пор все больше занимаюсь силовой автоматикой и электроникой.

Почему я здесь? Да потому, что здесь все - такие же, как я. Здесь много для меня интересного, поскольку я не силен в аудио-технике, а хотелось бы иметь больший опыт именно в этом направлении.

Читательское голосование

Статью одобрили 77 читателей.

Для участия в голосовании зарегистрируйтесь и войдите на сайт с вашими логином и паролем.