Как измерить выходную мощность усилителя низкой частоты. Измерение выходной мощности усилителя низкой частоты

Важнейшей характеристикой периодических процессов является частота, которая определяется числом полных циклов (периодов) колебаний за единичный интервал времени. Необходимость в измерении частоты возникает во многих областях науки и техники и особенно часто - в радиоэлектронике, которая охватывает обширную область электрических колебаний от инфранизких до сверхвысоких частот включительно.

Для измерения частоты источников питания электрорадиоустройств применяют электромагнитные, электро- и ферродинамические частотомеры с непосредственной оценкой по шкале логометрического измерителя, а также камертонные частотомеры. Эти приборы имеют узкие пределы измерений, обычно в пределах +-10% одной из номинальных частот 25, 50, 60, 100, 150, 200, 300, 400, 430, 500, 800, 1000, 1500 и 2400 Гц, и работают при номинальном напряжении 36, 110, 115, 127, 220 или 380 В.

Очень низкие частоты (менее 5 Гц) можно приближённо определить подсчётом числа полных периодов колебаний за фиксированный промежуток времени, например, с помощью магнитоэлектрического прибора, включённого в исследуемую цепь, и секундомера; искомая частота равна среднему числу периодов колебаний стрелки прибора в 1 с. Низкие частоты могут измеряться методом вольтметра, мостовым методом, а также методами сравнения с опорной частотой посредством акустических биений или электроннолучевого осциллографа. В широком диапазоне низких и высоких частот работают частотомеры, основанные на методах заряда - разряда конденсатора и дискретного счёта. Для измерения высоких и сверхвысоких частот (от 50 кГц и выше) применяются частотомеры, базирующиеся на резонансном и гетеродинном методах. На СВЧ (от 100 МГц и выше) широко применяется метод непосредственной оценки длины волны электромагнитных колебаний при помощи измерительных линий.

Если исследуемые колебания имеют форму, отличную от синусоидальной, то, как правило, измеряется частота основной гармоники этих колебаний. Если необходим анализ частотного состава сложного колебания, то применяются специальные приборы - анализаторы спектра частот.

Современная измерительная техника позволяет измерять высокие частоты с относительной погрешностью до 10 -11 ; это означает, что частота примерно 10 МГц может быть определена с ошибкой не более 0,0001 Гц. В качестве источников высокостабильных образцовых частот используют кварцевые, молекулярные и атомные генераторы, а в области низких частот - камертонные генераторы. Методы стабилизации частоты, применяемые на радиовещательных станциях, позволяют поддерживать частоту с относительной погрешностью не более 10 -6 , поэтому их несущие частоты можно успешно использовать в качестве опорных при частотных измерениях. Кроме того, через радиостанции Государственной службы времени и частоты СССР регулярно передаются колебания ряда образцовых частот (100 и 200 кГц, 2,5; 5; 10 и 15 МГц), которые представляют собой немодулированную несущую, периодически прерываемую подачей позывных и сигналов точного времени.

Во многих случаях радиотехнической практики при измерении низких частот можно допустить погрешность до 5-10%, а при измерении высоких частот - до 0,1-1%, что облегчает требования к схеме и конструкции применяемых частотомеров.

Измерение частоты при помощи вольтметра

Наиболее простым является косвенный способ измерения частоты, основанный на зависимости сопротивления реактивных элементов от частоты протекающего по ним тока. Возможная схема измерений представлена на рис. 1.

Рис. 1. Схема измерения частоты при помощи вольтметра

К источнику колебаний частоты F x подключается цепочка из безреактивного резистора R и конденсатора С с малыми потерями, параметры которых точно известны. Высокоомным вольтметром переменного тока V с пределом измерения, близким к значению входного напряжения, поочерёдно измеряются напряжения U R и U C на элементах цепочки. Поскольку U*R = I*R, a U C = I/(2πF x C) (где I - ток в цепи), то отношение U R /U C = 2πF x RC, откуда следует:

F x = 1/(2πRC) * U R /R C

Входное сопротивление вольтметра V должно по крайней мере в 10 раз превышать сопротивление каждого из элементов цепочки. Однако влияние вольтметра можно исключить, если использовать его лишь в качестве индикатора равенства напряжений U R и U C , достигаемого, например, плавным изменением сопротивления R. В этом случае измеряемая частота определяется простой формулой:

F x = 1/(2πRC) ≈ 0,16/(RC),

и при неизменной ёмкости конденсатора С переменный резистор R можно снабдить шкалой с отчётом в значениях F x .

Оценим возможный порядок измеряемых частот. Если резистор R имеет максимальное сопротивление R M = 100 кОм, то при С = 0,01 мкФ, 1000 и 100 пФ верхний предел измерений составит соответственно 160, 1600 и 16000 Гц. При выборе R M = 10 кОм и тех же значениях ёмкостей эти пределы окажутся равными 1600 Гц, 16 и 160 кГц. Эффективность метода зависит от точности подбора номиналов и качества элементов RС-цепочки.

Ёмкостные частотомеры

Для практических целей наиболее удобны прямопоказывающие частотомеры, позволяющие вести непрерывные наблюдения за частотой исследуемых колебаний по шкале стрелочного измерителя. К ним относятся, прежде всего, ёмкостные частотомеры, действие которых основано на измерении среднего значения тока заряда или разряда опорного конденсатора, периодически перезаряжаемого напряжением измеряемой частоты f x . Эти приборы применяются для измерения частот от 5-10 Гц до 200-500 кГц. При допустимой погрешности измерений примерно 3-5% они могут быть выполнены по простым схемам, один из вариантов которых представлен на рис. 2. Здесь транзистор Т1, работающий в ключевом режиме, управляется напряжением частоты f x , которое подводится к его базе с входного потенциометра R1. В отсутствие входного сигнала транзистор Т1 открыт, поскольку его база через резисторы R3 и R2 соединена с отрицательным полюсом источника питания. При этом на резисторе R5 делителя R5, R2 создаётся падение напряжения U; последнее благодаря наличию конденсатора большой ёмкости С2 фиксируется в качестве напряжения питания транзисторного каскада и при быстрых периодических изменениях режима транзистора почти не меняется. При установке переключателя В в положение «U-» измеритель И, включённый последовательно с добавочным резистором R6, образует вольтметр, измеряющий постоянное напряжение U на конденсаторе С2, которое с помощью подстроечного резистора R2 поддерживается на определённом уровне, например 15 В. Вместо рассмотренной может быть успешно применена типовая схема параметрической стабилизации напряжения на стабилитроне, не требующая систематического контроля.

Рис. 2. Схема ёмкостного частотомера

В положительный полупериод входного напряжения частоты f x транзистор Т1 закрывается и напряжение на его коллекторе резко возрастает до значения U; при этом происходит быстрый заряд до напряжения, близкого к U, одного из конденсаторов С, зарядный ток которого протекает через измеритель И и диод Д2. В отрицательный полупериод транзистор Т1 открывается, его сопротивление становится очень малым, что приводит к быстрому и почти полному разряду конденсатора С током, протекающим через диод Д1. За один период измеряемой частоты количество электричества, сообщаемое конденсатору при заряде и отдаваемое им при разряде, q ≈ CU. Поскольку процесс заряда - разряда повторяется с частотой f x , то среднее значение I зарядного тока, регистрируемое измерителем И , оказывается пропорциональным этой частоте:

I = q*f x ≈ C*U*f x .

Это позволяет снабдить измеритель линейной шкалой, проградуированной непосредственно в значениях измеряемых частот.

Если известны ток полного отклонения измерителя I и и постоянное напряжение U, то при заданном предельном значении измеряемых частот f п конденсатор должен иметь ёмкость

C = I и /(U*f п).

Например, при номиналах элементов схемы, указанных на рис. 2, частотомер может быть отрегулирован для работы при верхних пределах измерений 100 Гц, 1, 10 и 100 кГц.

В данной схеме коммутатор на транзисторе Т1 одновременно выполняет функции усилителя-ограничителя, благодаря чему показания частотомера мало зависят от формы входного напряжения. Любое периодическое входное напряжение с амплитудой примерно от 0,5 В и выше трансформируется в импульсное напряжение почти прямоугольной формы с неизменной амплитудой U f которое питает измерительную (счётную) цепь частотомера. Конденсатор С3, шунтирующий измеритель, сглаживает пульсации стрелки последнего при измерении самых низких частот общего диапазона.

Подстроечный резистор R7, включённый параллельно измерителю, служит для коррекции шкалы частотомера в процессе его эксплуатации. При этом на вход частотомера подают напряжение опорной частоты от измерительного генератора или сети переменного тока (50 Гц) и регулировкой сопротивления R7 добиваются отклонения стрелки измерителя до соответствующего деления шкалы частот. Такую регулировку повторяют несколько раз, перемежая её с указанной выше установкой напряжения питания U, осуществляемой с помощью резистора R2.

Входное напряжение, меньшее 0,3-0,5 В, может оказаться недостаточным для запирания транзистора Т1 в течение большей части положительного полупериода; тогда конденсатор С не будет успевать заряжаться до напряжения U и показания частотомера окажутся заниженными. Для повышения чувствительности по входному напряжению до 20-50 мВ электронному ключу иногда предшествует усилительный каскад, выполняемый по схеме с общим эмиттером.

При чрезмерном входном напряжении входной транзистор может быть повреждён; это приводит к необходимости включения на входе ограничительных или регулировочных элементов, например потенциометра R1 в схеме на рис. 2. Входное напряжение следует повышать постепенно, следя за показаниями измерителя частотомера, и когда последние, после некоторого интервала возрастания, стабилизируются, можно производить оценку частоты f x . Полезно осуществлять контроль входного напряжения с целью установки его на оптимальном для данного частотомера уровне, например 1,5 В. В данной схеме это имеет место в положении «U~» переключателя В, когда измеритель с диодами Д1, Д2 и резистором R4 образуют вольтметр переменного тока с пределом измерений примерно 3 В, контролирующий напряжение, снимаемое с потенциометра R1.

Частотомеры, выполненные по схемам, аналогичным рассмотренной, дают достаточно точные показания лишь при входных напряжениях, близких по форме к напряжениям (обычно синусоидальным), использованным при отладке и градуировке прибора. Универсальные ёмкостные частотомеры позволяют измерять частоты как непрерывных, так и импульсных напряжений любой формы и полярности в широком диапазоне частот и входных напряжений 1. В самом общем случае их функциональная схема содержит следующие последовательно включённые компоненты: входной делитель - согласующий каскад - усилитель - триггер Шмитта - дифференцирующая цепочка с фильтрующим диодом - ждущий мультивибратор - счётная схема. Высокоомный входной делитель, обычно ступенчатый, повышает максимально допустимые значения входных напряжений до сотен вольт. Эмиттерный или истоковый повторитель обеспечивает высокое входное сопротивление прибора, ослабляя его влияние на исследуемые цепи. Усилитель понижает максимально допустимое значение входного напряжения до десятков милливольт. Усиленные им колебания частоты f x периодически запускают триггер Шмитта, который формирует прямоугольные импульсы с частотой повторения f x .

Рис. 3. Схема универсального ёмкостного частотомера

Поскольку длительность этих импульсов зависит от частоты и амплитуды входного сигнала, они непригодны для точного измерения частоты. Поэтому с помощью дифференцирующей RC-цепочки каждый прямоугольный импульс триггера преобразуется в пару остроконечных импульсов различной полярности. Один из этих импульсов, возникающий при спаде прямоугольного импульса, отфильтровывается с помощью диода, а второй, соответствующий фронту прямоугольного импульса триггера, используется для запуска ждущего мультивибратора. Последний выдаёт прямоугольные импульсы строго определённой длительности и амплитуды, частота повторения которых, очевидно, равна f x . В результате счётная схема с переключаемыми конденсаторами различных номиналов, выпрямительными элементами и стрелочным измерителем обеспечивает измерение частоты f x при полной независимости отсчёта от амплитуды и формы входного напряжения. С целью уменьшения погрешности измерений (не превышающей в лучших образцах 1%) на каждом частотном пределе устанавливается оптимальная длительность импульсов мультивибратора, примерно равная половине периода наивысшей частоты этого предела измерений. Если питание универсального частотомера производится от сети переменного тока, то обязательно осуществляют параметрическую стабилизацию выпрямленного напряжения, причём частота сети 50 Гц или её удвоенное значение 100 Гц (частота пульсаций) используется в качестве опорной для коррекции шкалы.

В конкретных приборах рассмотренная функциональная схема реализуется в различных вариантах. На рис. 3 приведена схема сравнительно простого универсального частотомера с верхними пределами измерения 200, 2000 и 20 000 Гц, в котором может быть использован измеритель И с током полного отклонения 1-3 мА. Прибор содержит входной ступенчатый делитель R1-R3, усилитель на транзисторе T1, триггер Шмитта на транзисторах Т2 и Т3, дифференцирующую цепочку С3, R13 с диодом Д2, пропускающим лишь импульсы положительной полярности, и ждущий мультивибратор на транзисторах Т4, Т5. Особенностью частотомера является отсутствие специальных выпрямительных элементов. Измеритель И включён в одно из плеч мультивибратора, открываемое на фиксированный интервал времени продифференцированными импульсами запуска, и регистрирует среднее значение коллекторного тока, пропорциональное частоте f x . Верхние пределы измерений f п определяются длительностью импульсов мультивибратора, которые устанавливаются подбором номиналов конденсаторов С4-С6 с использованием подстроечных резисторов R18-R20. Поскольку в данной схеме все счётные RC-цепочки взаимосвязаны, регулировку их следует производить в следующем порядке: C4-R18, C5-R19 и C6-R20 с последующей повторной подстройкой всех пределов резисторами R18-R20.

Погрешность измерений частотомера определяется в основном точностью настройки и устойчивостью работы ждущего мультивибратора, поэтому напряжение питания последнего стабилизируется резистором R12 и стабилитроном Д1. Подстроечным резистором R4 подбирают оптимальное смещение на базе транзистора Т1 (4-5 В). При наличии высокочастотного предела измерений (например, до 200 кГц) для повышения быстродействия триггера и мультивибратора полезно включить параллельно резисторам R10 и R15 конденсаторы небольшой ёмкости (десятки пикофарад).

Поскольку усилитель на транзисторе T1 работает в режиме ограничения амплитуды, то при входных напряжениях до 10-20 В можно обойтись без входного делителя напряжения; при этом на входе следует включить ограничительный резистор.

Электронно-счётные (цифровые) частотомеры

Электронно-счётные частотомеры по своим возможностям являются универсальными приборами. Их основное назначение - измерение частоты непрерывных и импульсных колебаний, осуществляемое в широком частотном диапазоне (примерно от 10 Гц до 100 МГц) при погрешности измерений не более 0,0005%. Кроме того, они позволяют измерять периоды низкочастотных колебаний, длительности импульсов, отношения двух частот (периодов) и т. д.

Действие электронно-счётных частотомеров основано на дискретном счёте числа импульсов, поступающих за калиброванный интервал времени на электронный счётчик с цифровой индикацией. На рис. 4 приведена упрощённая функциональная схема прибора. Напряжение измеряемой частоты f x в усилительно-формирующем устройстве преобразуется в последовательность однополярных импульсов, повторяющихся с той же частотой f x . Для этой цели часто используется система из усилителя-ограничителя и триггера Шмитта, дополненная на выходе дифференцирующей цепочкой и диодным ограничителем (см. и рис. 3). Временной селектор (электронный ключ с двумя входами) пропускает эти импульсы на электронный счётчик лишь в течение строго фиксированного интервала времени Δt, определяемого длительностью прямоугольного импульса, воздействующего на его второй вход. При регистрации счётчиком m импульсов измеряемая частота определяется формулой

Например, если за время Δt = 0,01 с отмечено 5765 импульсов, то f x = 576,5 кГц.

Погрешность измерения частоты определяется главным образом погрешностью калибровки выбранного интервала времени счёта. Задающим компонентом в системе формирования этого интервала является высокостабильный кварцевый генератор, положим, частоты 100 кГц. Создаваемые им колебания с помощью группы последовательно включённых делителей частоты преобразуются в колебания с частотами (f 0) 10 и 1 кГц, 100, 10, 1 и 0,1 Гц. которым соответствуют периоды (Т 0) 0,0001; 0,001; 0,01; 0,1; 1 и 10 с (последние одно или два из указанных значений f 0 и Т 0 у некоторых частотомеров отсутствуют).

Колебания выбранной (посредством переключателя В2) частоты f 0 (числовое значение последней является множителем к отсчёту по счётчику) с помощью триггера Шмитта преобразуются в прямоугольные колебания с частотой повторения f 0 . Под их действием в управляющем устройстве формируется интервальный импульс длительностью Δt = Т 0 = 1/f 0 строго прямоугольной формы. Этот импульс вызывает сброс предыдущих показаний счётчика, а затем (с задержкой на несколько микросекунд) поступает на селектор и открывает его на время Δt для пропускания импульсов с частотой повторения f x . После закрывания селектора число пропущенных им импульсов m фиксируется индикатором счётчика, а измеряемая частота определяется по формуле f x = m*f 0 .

Рис. 4. Упрощённая функциональная схема электронно-счётного (цифрового) частотомера

Цепь управления селектором может запускаться вручную (нажатием кнопки «Пуск»); в этом случае управляющее устройство посылает на селектор одиночный импульс длительностью Δt и счётчик выдаёт разовый результат измерений с неограниченным временем индикации его. В режиме автоматического измерения частоты импульсы реле времени периодически повторяются и результаты измерения обновляются через выбранные интервалы времени.

Частотомер может служить источником колебаний ряда опорных частот f 0 , получаемых с помощью кварцевого генератора, умножителя и делителей частоты и снимаемых со специального выхода. Эти же колебания, поданные на вход частотомера, могут служить для проверки правильности показаний счётчика.

Счётчик частотомера собирается из 4-7 пересчётных декад на триггерных схемах и цифровых индикаторных лампах. Число декад определяет максимальное число значащих цифр (разрядов) в результатах измерений. Возможная ошибка счёта, называемая погрешностью дискретности, составляет одну единицу в цифре самого младшего разряда. Поэтому желателен выбор такого интервала времени счёта Δt, при котором используется максимальное число разрядов счётчика. Так, в рассмотренном выше примере при Δt = 0,01 с (f 0 = 100 Гц) для отсчёта оказалось достаточным четырёх разрядов счётчика и результат измерений f x = 576,5 кГц +-100 Гц. Предположим, что измерения повторены при Δt = 0,1 с (f 0 = 10 Гц) и получен отсчёт m = 57653 импульсов. Тогда f x = 576,53 кГц +-10 Гц. Ещё меньшая погрешность дискретности (+-1 Гц) будет получена при Δt = 1 с (в этом случае счётчик должен иметь не менее шести декад).

При расширении диапазона измерений частотомера в сторону высоких частот ограничивающим фактором является быстродействие пересчётных декад. При выполнении триггерных схем на высокочастотных кремниевых транзисторах (например, типа КТ316А), имеющих время рассасывания заряда в базе примерно 10 нс, верхняя предельная измеряемая частота может достигать десятков мегагерц. В некоторых приборах при измерении высоких частот, превышающих, например, 10 МГц, их предварительно преобразуют в частоту, меньшую 10 МГц (например, частоту 86,347 МГц в частоту 6,347 МГц), пользуясь гетеродинным методом (см. ).

Фактором, ограничивающим нижнюю предельную измеряемую частоту, является время измерений. Если, например, установить наибольший для многих частотомеров интервал времени счёта Δt = 1 с, то при регистрации счётчиком 10 импульсов результатом измерений явится частота f x = 10 = +-1 Гц, т.е. погрешность измерения может достигать 10%. Для уменьшения погрешности, положим, до 0,01% необходимо было бы производить счёт импульсов в течение времени Δt = 1000 с. Ещё большее время требуется для точного измерения частот, равных 1 Гц и менее. Поэтому в электронно-счётных частотомерах измерение очень низких частот f x заменяют измерением периода их колебаний Т х = 1/f x . Схема измерения периода колебаний образуется при установке переключателя В1 в положение «Тх» (рис. 4). Исследуемое напряжение после преобразования в триггере Шмитта воздействует на управляющее устройство, в котором формируется прямоугольный импульс длительностью Т x , поддерживающий временной селектор в открытом состоянии; в течение этого времени счётчик регистрирует импульсы, формируемые из колебаний одной из опорных частот f о, определяемой установкой переключателя В2 . При числе m отмеченных импульсов измеряемый период

Например, при m = 15625 и f 0 = 1000 Гц период Т х = 15,625 с, что соответствует частоте f x = 1/Т х = 0,054 Гц. Измерения, в целях уменьшения их погрешности, желательно производить при возможно большем значении частоты f о (исключающем, конечно, перегрузку счётчика). Если период Т х < 1 с (f x > 1 Гц), то может оказаться рациональным использование колебаний частоты f 0 , равной 1 или 10 МГц, получаемых после умножителей частоты. При этом нижний предел измеряемых частот удаётся расширить до 0,01 Гц.

Измерению отношения двух частот f 1 /f 2 (f 1 > f 2) соответствует установка переключателей В2 в положение «Выключено», а В1 - в положение «f x ». Напряжение меньшей частоты f 2 подводят к зажимам «f o », и его период определяет интервал времени счёта Δt. Напряжение частоты f 1 , подводимое к входу преобразуется в импульсы, число которых (m) регистрируется счётчиком в течение времени Δt = 1/f 2 . Искомое отношение частот f 1 /f 2 = m (с погрешностью до единицы). Очевидно, что данным способом имеет смысл находить отношение лишь значительно различающихся частот.

К недостаткам электронно-счётных частотомеров следует отнести сложность их схем, значительные габариты и массу, высокую стоимость.

Осциллографические методы измерения частоты

Измеряемая частота может быть определена сравнением её с известной опорной частотой f o . Такое сравнение чаще всего производится с помощью электроннолучевого осциллографа или методами биений.

Электроннолучевые осциллографы применяются для измерения частот колебаний главным образом синусоидальной формы в диапазоне частот примерно от 10 Гц до значения, определяемого верхней границей полосы пропускания каналов отклонения; погрешность измерений практически равна погрешности калибровки источника колебаний (генератора) опорной частоты f 0 . Чаще всего измерения проводят при выключенной развёртке осциллографа, пользуясь схемой соединений, показанной на рис. 5. Напряжения измеряемой и известной частот подводят непосредственно или через усилители к различным парам отклоняющих пластин ЭЛТ (в зависимости от того, на какой вход осциллографа эти напряжения воздействуют, будем обозначать их частоты через f x и f y). Если эти частоты относятся друг к другу как целые числа, например 1:1, 1:2, 2:3 и т. п., то перемещение электронного луча приобретает периодический характер и на экране наблюдается неподвижное изображение, называемой фигурой Лиссажу. Форма этой фигуры зависит от соотношения амплитуд, частот и начальных фаз сравниваемых колебаний.

Рис. 5. Схема измерения частоты методом фигур Лиссажу

На рис. 6 показано образование фигуры Лиссажу при воздействии на отклоняющие пластины трубки двух синусоидальных колебаний одинаковой частоты и равных амплитуд, но имеющих различные начальные фазы. Эта фигура имеет вид наклонного эллипса, который при фазовых сдвигах между колебаниями в 0 и 180° сжимается в прямую наклонную линию, а при фазовых сдвигах 90° и 270° - превращается в окружность (условно считаем чувствительность по отклонению обеих пар пластин одинаковой). Если амплитуды напряжений частот f x и f y не равны, то в последнем случае вместо круга на экране будет наблюдаться эллипс с осями, параллельными плоскостям отклоняющих пластин.

Рис. 6. Построение осциллограммы при отношении сравниваемых частот f x /f y = 1

Если отношение частот f x /f y (или f y /f x) равно двум, то фигура на экране принимает вид восьмёрки, которая при начальных фазовых сдвигах 90 и 270° стягивается в дугу. (Начальный фазовый сдвиг всегда оценивается по отношению к периоду напряжения более высокой частоты). Из таблицы, приведённой на рис. 7, видно, что чем больше числа дроби, характеризующей отношение сравниваемых частот, тем сложнее фигура Лиссажу, наблюдаемая на экране.

При измерении частоту опорного генератора f 0 (равную f x или f y) плавно изменяют до тех пор, пока на экране не возникнет одна из фигур Лиссажу возможно более простой формы. Эту фигуру мысленно пересекают линиями xx и уу, параллельными плоскостям отклоняющих пластин X1, Х2 и Y1, Y2, и подсчитывают число пересечений каждой из линий с фигурой. Отношение полученных чисел точно равно отношению частот f x:f y при условии, что проведённые линии не проходят через узловые точки фигуры или касательно к ней, а форма сравниваемых колебаний близка к синусоидальной.

Рис. 7. Фигуры, наблюдаемые на экране при различных отношениях частот f x /f y

Определив отношение f x:f y и зная одну из частот, например f y , легко найти вторую частоту.

Предположим, что при известной частоте f y = 1000 Гц на экране получена фигура, изображённая на рис. 5. Из приведённого на чертеже построения видно, что эта фигура соответствует отношению частот f x:f y = 3:4, откуда f x = 750 Гц.

Вследствие некоторой нестабильности сравниваемых частот устанавливаемое между ними целочисленное или дробно-рациональное отношение постоянно нарушается, что приводит к постепенному изменению формы наблюдаемой фигуры, последовательно проходящей через все возможные фазовые состояния. Если зафиксировать время Δt, в течение которого фигура претерпевает полный цикл фазовых изменений (от 0 до 360°), то можно вычислить разность сравниваемых частот |f x - f y | = 1/Δt, знак которой легко определить экспериментально посредством небольшого изменения частоты f 0 . На высоких частотах даже весьма малая нестабильность одной из частот вызывает столь быстрые изменения фигуры Лиссажу, что становится невозможным определить отношение частот. Это ограничивает верхний предел измеряемых частот значением примерно 10 МГц.

Рис. 8. Схема измерения частоты методом круговой развёртки с модуляцией яркости

При целочисленном отношении сравниваемых частот, превышающем 8-10, или дробном их отношении с числами в знаменателе или числителе, большими 4-5, из-за усложнения фигуры Лиссажу возрастает возможность ошибки в установлении истинного отношения частот. Точное определение сравнительно больших целочисленных отношений частот (до 30-50) может производиться методом круговой развёртки с модуляцией яркости изображения (рис. 8). В этом случае напряжение меньшей частоты f 1 с помощью двух одинаковых фазорасщепляющих RС-цепочек преобразуется в два напряжения той же частоты, взаимно сдвинутые по фазе на 90°. При воздействии этих напряжений соответственно на входы Y и X осциллографа и регулировке соотношения их амплитуд резисторами R и регуляторами усиления каналов Y и X световое пятно на экране будет перемещаться по кривой, близкой к окружности; последнюю с помощью регулятора яркости устанавливают чётко видимой. Напряжение более высокой частоты f 2 подводят к входу модулятора М (или канала Z) и оно периодически будет увеличивать и уменьшать интенсивность электронного луча, а следовательно, и яркость отдельных участков кривой развёртки на экране. При целочисленном отношении частот f 2:f 1 = m, достигаемом изменением одной из них, кривая наблюдаемой окружности становится штриховой, она состоит из f неподвижных светящихся отрезков равной длины, разделённых тёмными промежутками. При нарушении целочисленного отношения наблюдается вращение штриховой окружности, при большой скорости которого окружность представляется сплошной.

Рассмотренный метод можно применить и для измерения частоты повторения f п импульсных колебаний. При этом напряжением опорной частоты f 0 осуществляют круговую развертку, регулятором яркости её устанавливают видимой или невидимой в зависимости от полярности (соответственно отрицательной или положительной) подводимых к модулятору импульсных колебаний. Последние будут создавать на линии развёртки в первом случае тёмные разрывы, а во втором - светящиеся точки. Плавным изменением частоты fо (от её минимально возможного значения) добиваются получения на линии развёртки одного неподвижного или медленно перемещающегося следа импульса, при этом f п = f 0 .

Измерение частоты f п импульсных колебаний можно производить и по схеме на рис. 5 при подаче синусоидального напряжения опорной частоты f 0 на вход X, а импульсного напряжения - на вход Y осциллографа. Частоту развёртки f 0 = f x постепенно повышают, начиная с её наименьшего значения, пока на экране не возникнет достаточно устойчивое изображение одного импульса, что имеет место при f п = f 0 . Такая методика измерений исключает возможность ошибки, поскольку одиночный импульс будет наблюдаться на экране и при других, больших единицы, целочисленных отношениях частот f 0:f п.

Измерение частоты методами биений

Источником колебаний опорных частот обычно является измерительный генератор с плавной или плавно-ступенчатой настройкой, частоту которого f 0 можно установить равной измеряемой частоте f x . Если частоты f 0 и f x являются звуковыми, то об их равенстве можно приближённо судить, прослушивая поочерёдно тона создаваемых ими колебаний при помощи телефонов или громкоговорителя.

Погрешность измерений уменьшается практически до погрешности калибровки измерительного генератора, если одновременно подавать на телефоны электрические колебания обеих сравниваемых частот в соответствии со схемой на рис. 9, а. Если частоты f 0 и f x близки друг к другу, то при сложении соответствующих им колебаний возникают акустические биения, которые проявляются в периодическом нарастании и спадании интенсивности прослушиваемого в телефонах Т ф тона. Частота биений

может быть определена подсчётом на слух числа нарастаний или спаданий интенсивности тона за фиксированный промежуток времени. Для того чтобы биения проявлялись достаточно резко, амплитуды колебаний частот f 0 и f x нужно устанавливать примерно одинаковыми; это следует из рассмотрения рис. 9, б, где средняя кривая колебаний, пульсирующих с частотой F, представляет собой результат сложения верхней и нижней кривых колебаний, соответствующих частотам f 0 и f x .

Рис. 9. К принципу измерения низких частот методом акустических биений

Изменением настройки генератора частоту f 0 приближают к частоте f x , что обнаруживается по возрастанию периода биений. При совпадении сравниваемых частот биения пропадают и в телефонах слышен однообразный тон. Вместо телефонов в качестве индикатора биений можно применить вольтметр переменного тока; это особенно целесообразно при измерении частот выше 5 кГц, тон которых в телефонах прослушивается не чётко.

На высоких частотах сравнение частот f 0 и f x чаще всего проводится методом нулевых биений. На рис. 10 представлена простейшая схема измерений. В цепь диода Д посредством катушек связи L1, L2 и L одновременно вводятся колебания частот f 0 и f x . В результате детектирования суммарного колебания в цепи диода возникает пульсирующий ток, содержащий составляющие основных частот f 0 и f x , а также составляющие высших гармоник и комбинационных частот f 0 + f x и |f 0 - f x |. Если частоты f 0 и f x близки друг к другу, то разностная частота биений F = |f 0 - f x | может оказаться в пределах звуковых частот и тон этой частоты будет услышан в телефонах Т ф, зашунтированных от токов высоких частот конденсатором С.

Рис. 10. К принципу измерения высоких частот методом нулевых биений

Если изменять одну из частот, например f o , приближая её к другой частоте f x , тон в телефонах будет понижаться и при равенстве этих частот будут наблюдаться нулевые биения, обнаруживаемые по пропаданию звука в телефонах. Таким образом, измерение частоты сводится к определению частоты опорного генератора, при которой наступают нулевые биения. Как видно из графика на рис. 11, а, при отходе от точки нулевых биений разностная частота F возрастает как при увеличении, так и при уменьшении частоты генератора f 0 .

Рис. 11. Графики зависимости частоты биений от настройки генератора опорных частот

Погрешность измерения частоты определяется в основном погрешностью калибровки частоты f 0 опорного генератора. Однако при точных измерениях приходится учитывать возможную ошибку в несколько десятков герц, обусловленную тем, что слуховой аппарат человека не воспринимает тона с частотой ниже некоторой частоты F н; значения последней у различных людей лежат в пределах 10-30 Гц. Для исключения этой ошибки последовательно с телефонами Т ф можно включить магнитоэлектрический измеритель тока, стрелка которого при очень низкой разностной частоте F будет пульсировать с этой частотой. При подходе к нулевым биениям колебания стрелки замедляются и их легко сосчитать за фиксированный промежуток времени.

Связь между опорным генератором и источником измеряемой частоты не должна быть сильной во избежание возникновения явления «захватывания», ведущего к возрастанию погрешности измерений. При сильной связи между двумя генераторами, разность частот настроек которых невелика, один из генераторов может навязать свою частоту другому и оба генератора будут создавать колебания одинаковой частоты. В этом случае частота биений F изменяется в соответствии с графиком на рис. 11, б, т. е. во всей области «захватывания» она оказывается равной нулю и звук в телефонах отсутствует.

В качестве чувствительного индикатора нулевых биений можно использовать электроннолучевой осциллограф, желательно с открытым входом по каналу Y. При этом в качестве нагрузки детекторной схемы (рис. 10) вместо телефонов включают резистор сопротивлением 50-200 кОм, напряжение с которого подаётся на вход У осциллографа. При включённой развёртке на экране просматривается кривая напряжения частоты биений F. С приближением к нулевым биениям период этого напряжения будет возрастать и при f 0 = f x на экране видна лишь горизонтальная линия развёртки. Если измерения проводятся при выключенной развёртке, то наблюдаемая на экране вертикальная линия при f 0 = f x превращается в точку.

На принципе измерения высоких частот методом нулевых биений основано действие кварцевых калибраторов и гетеродинных частотомеров.

Кварцевые калибраторы

Из приборов повышенной точности, применяемых для измерения высоких частот, самыми простыми являются кварцевые калибраторы. Они позволяют проверять шкалы радиоприёмных и радиопередающих (генераторных) устройств в ряде точек, соответствующих строго определённым (опорным) частотам.

Рис. 12. Функциональная схема кварцевого калибратора

Функциональная схема кварцевого калибратора приведена в наиболее полном варианте на рис. 12. Основным компонентом прибора является кварцевый генератор, работающий в таком режиме, что возбуждаемые им колебания имеют форму, резко отличную от синусоидальной, и потому содержат, кроме составляющей основной частоты f 0 , большое число гармоник, частоты которых равны 2f 0 , 3f 0 , 4f 0 и т. д., а амплитуды постепенно убывают с повышением частоты. Обычно удаётся использовать для измерений от десятков до нескольких сотен гармоник, которые имеют такую же высокую стабильность (обычно в пределах 0,01 - 0,001%), как и частота f 0) стабилизированная кварцевым резонатором (кварцем) в условиях отсутствия специальных устройств (например, термостатов), повышающих эффект стабилизации.

Колебания, возбуждаемые кварцевым генератором, подводятся к гнезду (или зажиму) связи Ан, который вместе с присоединённым к нему небольшим проводником или штырём играет роль приёмной или передающей антенны в зависимости от характера использования прибора. С целью экранировки прибор обычно помещают в металлический кожух.

При проверке шкал радиоприёмников калибратор служит источником колебаний ряда опорных частот, излучаемых через провод связи. Приёмник последовательно настраивают на различные гармоники кварцевого генератора и определяют соответствующие им точки шкалы. Если приёмник работает в телеграфном режиме, то его настройку на гармонику генератора фиксируют по нулевым биениям с частотой второго гетеродина, прослушиваемым в телефонах или громкоговорителе, подключённых к выходу приёмника. Шкалы приёмников прямого усиления проверяют при обратной связи, доведённой до генерации. Для проверки градуировки приёмников, работающих только в телефонном режиме, например радиовещательных, колебания кварцевого генератора необходимо промодулировать звуковой частотой, что требует введения в состав калибратора генератора колебаний частоты 400 или 1000 Гц (в приборах с сетевым питанием иногда используют для модуляции напряжение частотой 50 или 100 Гц). При этом настройку приёмника на гармонику кварцевого генератора производят по наибольшей громкости тона, воспроизводимого громкоговорителем, или, значительно точнее, по максимальным показаниям вольтметра, подключаемого к выходу приёмника.

Если кварцевый калибратор предназначен также для проверки шкал высокочастотных генераторов, например радиопередатчиков, то он дополняется детектором (смесителем), вход которого соединяется с гнездом связи Ан и выходом кварцевого генератора. Колебания проверяемого передатчика, наводимые в проводнике связи, создают биения с ближайшей к ним по частоте гармоникой кварцевого генератора; в результате детектирования выделяются колебания разностной частоты биений, которые после усиления прослушиваются в телефонах Т ф. Передатчик последовательно настраивают на частоты ряда гармоник генератора по нулевым биениям и тем самым определяют соответствующие им точки частотной шкалы передатчика.

Основным недостатком кварцевых калибраторов является многозначность результатов измерений, поскольку нулевые биения позволяют установить лишь факт равенства измеряемой частоты одной из гармоник кварцевого генератора без фиксации номера этой гармоники. Во избежание ошибки в установлении частоты гармоники, создающей нулевые биения, желательно, чтобы исследуемое устройство имело шкалу частот, приближённо проградуированную с помощью какого-либо прибора с однозначной оценкой частоты (резонансного частотомера, измерительного генератора и т. п.), точность измерений которого может быть невелика.

Разность частот соседних опорных точек калибратора равна основной частоте кварцевого генератора f 0 . С целью охвата основных радиовещательных диапазонов частоту f 0 часто берут равной 100 кГц, что обеспечивает проверку шкал радиоустройств до частот порядка 10 МГц (λ = 30 м). Для расширения диапазона измеряемых частот в сторону более коротких волн и исключения ошибки в определении частоты используемой гармоники предусматривают возможность работы кварцевого генератора на двух стабилизированных и находящихся в 10-кратном отношении основных частотах, равных обычно 100 и 1000 кГц. Каждой из этих частот отвечает своя сетка опорных точек. Принцип совместного использования обеих основных частот можно уяснить из следующего примера. Предположим, что проверяется настройка передатчика на частоте 7300 кГц. Тогда калибратор первоначально включают на основную частоту 1000 кГц. Передатчик настраивают по нулевым биениям на ближайшую к искомой частоту, кратную 1000 кГц, т. е. на частоту 7000 кГц. На этой частоте возможность ошибки практически исключена, так как опорные точки расположены редко, через 1000 кГц. Затем калибратор переключают на основную частоту 100 кГц; при точной подгонке кварцев нулевые биения должны сохраниться. Настройку передатчика плавно изменяют по направлению к требуемой частоте и отмечают последовательно точки шкалы, соответствующие нулевым биениям на частотах 7100, 7200 и 7300 кГц.

Если требуется уменьшить интервал между соседними опорными частотами, то применяют делители частоты, которые обычно выполняются по схеме мультивибратора, синхронизируемого на субгармонике входного сигнала. Так, с помощью двух каскадов деления с коэффициентами деления, равными 10, при основной частоте кварцевого генератора 1 МГц можно получить колебания с основными частотами 100 и 10 кГц и большим числом гармоник. Тогда точка шкалы, отвечающая, например, частоте 7320 кГц, будет выявлена при последовательном прохождении опорных точек на частотах 7000, 7100, 7200, 7300, 7310 и 7320 кГц. При основной частоте кварца 100 кГц с помощью двух делителей можно получить колебания с основными частотами 10 и 1 (или 2) кГц, однако их гармоники на высоких частотах будут очень слабыми. Колебания комбинационных частот с малыми интервалами между опорными точками, но имеющие значительную интенсивность, могут быть получены методом смешивания колебаний нескольких основных частот.

Рис. 13. Схема универсального кварцевого калибратора

На рис. 13 приведена схема простого кварцевого калибратора, пригодного для измерения частоты генераторных и радиоприёмных устройств. Кварцевый генератор на транзисторе Т2 возбуждает колебания основной частоты 100 или 1000 кГц в зависимости от установки переключателя В2 . Точная подгонка основных частот под номиналы производится подстроечными сердечниками катушек L1 и L2. Искажение формы колебаний, необходимое для получения большого числа гармонических составляющих, достигается включением между эмиттером и базой транзистора Т2 диода Д1. При необходимости модуляции этих колебаний выключателем В1 запускается генератор низкой частоты на транзисторе Т1. Детектирование биений осуществляется диодом Д2, высокочастотные составляющие выпрямленного тока отфильтровываются конденсатором С9.

Напряжение частоты биений, усиленное транзистором Т3, создаёт звуковые колебания в телефонах Т ф.

Рис. 14. Схема кварцевого калибратора с делителем частоты

На рис. 14 представлена схема кварцевого калибратора, предназначенного для градуировки частотных шкал радиоприёмников. Кварцевый генератор на транзисторах Т1 и Т2 возбуждает колебания частоты 100 кГц. Точная подгонка частоты под номинал может выполняться подбором ёмкости конденсатора С2 или подстроечным конденсатором небольшой ёмкости, включаемым параллельно контактам кварцедержателя. Параметры мультивибратора на транзисторах Т3, Т4, служащего для деления частоты в 10 раз, подбираются такими, чтобы в режиме свободных автоколебаний он генерировал колебания с частотой, несколько меньшей 10 кГц. Тогда при воздействии на него колебаний кварцевого генератора он будет синхронизироваться на частоте 10 кГц; это должно быть тщательно проверено при наладке прибора: между колебаниями смежных гармоник частоты 100 кГц в 9 точках шкалы проверяемого устройства должны проявляться гармоники частоты 10 кГц. Обилию гармоник способствует уменьшение длительности импульсов с помощью дифференцирующих цепочек С3, R6 и С6, R12, а также усиление импульсов включённым на выходе импульсным усилителем на транзисторе Т5.

При эксплуатации кварцевых калибраторов следует учитывать, что вследствие старения собственная частота кварцевых резонаторов со временем несколько изменяется.

Гетеродинные частотомеры

Гетеродинные частотомеры применяются для точных частотных измерений в плавном диапазоне высоких частот. В принципе гетеродинный частотомер отличается от кварцевого калибратора, выполненного по функциональной схеме на рис. 12, лишь тем, что вместо кварцевого генератора в нем используется гетеродин, т. е. маломощный генератор с плавно регулируемой частотой настройки. Наличие смесителя позволяет использовать прибор не только для градуировки частотных шкал радиоприёмников, но и для измерения методом нулевых биений частоты генераторов. Индикация нулевых биений осуществляется телефонами, осциллографическими и электронно-световыми индикаторами, а также стрелочными измерителями.

Погрешность измерений гетеродинного частотомера в основном определяется стабильностью частоты гетеродина и погрешностью её установки. Поэтому часто предпочитают гетеродины выполнять на электронных лампах. Повышению стабильности частоты способствуют правильный выбор схемы и конструкции гетеродина, применение в нем деталей с малым температурным коэффициентом, включение буферного каскада между гетеродином и выходными цепями, стабилизация напряжений питания, длительный прогрев прибора под током перед измерениями. Для повышения плавности регулировки и точности установки частоты управление конденсатором настройки гетеродина обычно осуществляют через верньерный механизм с большим замедлением (до 100-300 раз). Непосредственный отсчёт частоты по шкале конденсатора переменной ёмкости производят лишь в самых простых конструкциях; в большинстве приборов шкала выполняется равномерной с очень большим числом делений (до нескольких тысяч), а отсчёт по ней переводится в частоту при помощи таблиц или графиков.

С целью уменьшения числа частотных поддиапазонов и повышения устойчивости частоты гетеродины обычно работают в узком участке сравнительно невысоких частот (при коэффициенте перекрытия, равном двум), а для измерений используются как основные частоты генерируемых колебаний, так и ряд их гармоник; возникновение последних обеспечивается подбором режима работы гетеродина или буферного усилителя. Например, в частотомере широкого применения типа Ч4-1 с общим диапазоном измеряемых частот от 125 кГц до 20 МГц гетеродин имеет два плавных поддиапазона основных частот: 125-250 кГц и 2-4 МГц. На первом поддиапазоне при использовании первой, второй, четвёртой и восьмой гармоник удаётся плавно перекрыть полосу частот 125-2000 кГц; на втором поддиапазоне при использовании первой, второй, четвёртой и частично пятой гармоник перекрывается полоса частот 2-20 МГц. Таким образом, каждому положению ручки настройки гетеродина соответствуют три или четыре рабочие частоты, значения которых могут быть определены по градуировочной таблице. Например, измерение частот 175, 350, 700 и 1400 кГц производится при одной и той же настройке гетеродина на основную частоту f г = 175 кГц.

Многозначность частот настройки гетеродина создаёт возможность ошибки в установлении гармоники, с которой колебания измеряемой частоты f x создают биения. Поэтому, приступая к измерениям, необходимо знать приближённое значение частоты f x . Однако последнюю можно определить и расчётным путём при помощи самого гетеродинного частотомера.

Предположим, что при изменении настройки гетеродина получены нулевые биения с частотой f x при двух соседних значениях основных частот f г1 и f г2 одного и того же поддиапазона гетеродина. Очевидно, что частота f x является одновременно гармоникой обеих этих частот, т. е.

f x = n*f г1 = (n+1)*f г2 .

где n и (n + 1) - номера гармоник соответственно для основных частот f г1 и f г2 (при f г2 < f г1).

Решая полученное равенство относительно n, находим

n = f г2 /(f г1 -f г2).

Следовательно, измеряемая частота

f x = n*f г1 = f г1 *f г2 / (f г1 -f г2).

Например, если нулевые биения получены при основных частотах f г1 ≈ 1650 кГц и f г2 ≈ 1500 кГц, то приближённо f x ≈ 1650*1500/(1650 - 1500) = 16500 кГц.

При измерении частоты следует остерегаться ошибки, обусловленной возможностью возникновения биений между колебаниями гетеродина и гармоникой измеряемой частоты; поэтому измерения следует проводить при слабой связи между частотомером и исследуемым генератором. Погрешность измерений возрастает и при воздействии на прибор модулированных колебаний; в этом случае биения с основной (несущей) частотой будут прослушиваться на шумовом фоне биений с боковыми частотами.

Гетеродинные частотомеры рассмотренного типа обеспечивают измерение высоких частот с погрешностью примерно 1%. Снижение погрешности измерений до 0,01% и менее достигается при дополнении частотомера кварцевым генератором, позволяющим перед началом измерений производить проверку и коррекцию шкалы гетеродина в ряде опорных точек.

Развёрнутая функциональная схема гетеродинного частотомера повышенной точности представлена на рис. 15. Гетеродин имеет два поддиапазона, подгонка которых осуществляется подстроечными конденсаторами С3 и С4. Частота основных колебаний задаётся прямочастотным конденсатором переменной ёмкости C1. Уровень входного (выходного) сигнала регулируется потенциометром R. Кварцевый генератор создаёт богатые гармониками колебания, основная частота которых часто берётся равной 1 МГц. Выбор рода работы прибора производится без нарушения межкаскадных связей посредством включения или выключения питания отдельных компонентов. При установке переключателя В2 в положение 3 («Кварц») гетеродин выключен, а кварцевый генератор включён; при этом частотомер можно использовать как кварцевый калибратор для частотных измерений на гармониках генератора. В положении переключателя 1 («Гетеродин»), наоборот, кварцевый генератор выключен, а гетеродин включён. Это нормальный режим работы частотомера.

Рис. 15. Функциональная схема гетеродинного частотомера повышенной точности

Проверка шкалы частот гетеродина производится при установке переключателя В2 в положение 2 («Проверка»), когда одновременно включены и гетеродин, и генератор, колебания которых подводятся к детектору. При определённом соотношении частот или гармоник этих колебаний возникают звуковые биения, частота которых определяется формулой

F = |m*f г - n*f к |,

где f г и f к - основные частоты соответственно гетеродина и кварцевого генератора, а m и n - целые числа, отвечающие номерам взаимодействующих гармоник.

Частота биений оказывается равной нулю (F = 0) для ряда частот диапазона гетеродина, удовлетворяющих условию

f г =(n/m)*f к.

Эти частоты называются опорными и специально выделяются в градуировочных таблицах. Найдём для примера опорные частоты (f 0) диапазона гетеродина 2000-4000 кГц, если основная частота кварцевого генератора f к = 1000 кГц:

при m = 1 и n = 2, 3 и 4 f 0 = 2000, 3000 и 4000 кГц; при m = 2 и n = 5 и 7 f 0 = 2500 и 3500 кГц;

при m = 3 и n = 7, 8, 10 и 11 f 0 = 2333, 2667, 3333 и 3667 кГц и т. д.

Следует учитывать, что с возрастанием номеров взаимодействующих гармоник амплитуда биений уменьшается.

Если градуировка шкалы гетеродина нарушена, то при установке его ручки настройки на одну из опорных частот и включении кварцевого генератора вместо нулевых биений создаются колебания звуковой частоты, которые после усиления прослушиваются в телефонах Т ф. Для коррекции (калибровки) служит конденсатор С2 небольшой ёмкости, включённый параллельно основному конденсатору настройки С1: с его помощью перед началом измерений добиваются нулевых биений в ближайшей к измеряемой частоте опорной точке.

Порядок настройки гетеродинного частотомера рассмотрим на следующем примере. Предположим, что требуется проверить правильность шкалы передатчика на частоте 10700 кГц. Обращаясь к градуировочной таблице частотомера, находим, что этой частоте соответствует основная частота 10700/4 = 2675 кГц. По таблице или шкале основных точек определяем, что ближайшая опорная частота равна 2667 кГц. Тогда по шкале конденсатора С1 устанавливаем частоту 2667 кГц и, поставив переключатель В2 в положение «Проверка» (2), корректором С2 добиваемся нулевых биений. Затем переключатель В2 ставим в положение «Гетеродин» (1) и, установив частоту гетеродина 2675 кГц, производим на этой частоте проверку шкалы передатчика.

При измерении неизвестной частоты f x калибровка шкалы гетеродина производится в опорной точке, ближайшей к предполагаемому значению этой частоты, а затем в режиме измерения устанавливают нулевые биения регулировкой частоты гетеродина.

При калибровке шкалы гетеродина, а также при измерении частоты генераторов модулятор должен быть выключен; при измерении частоты настройки приёмников не нужен низкочастотный узел прибора. Для выключения неиспользуемых компонентов частотомера служит переключатель В3 .

Гетеродинные частотомеры различных типов промышленного изготовления в совокупности перекрывают полосу измеряемых частот от 100 кГц до 80 ГГц при погрешности измерений в пределах +-(5*10 -4 ...5*10 -6). При очень высоких частотах получить нулевые биения трудно. Поэтому в частотомерах СВЧ иногда в качестве индикатора используют низкочастотный частотомер (например, ёмкостный); по нему определяют разностную частоту биений F, на размер которой вносится поправка в результаты измерений.

Очень малая погрешность измерений в весьма широком диапазоне частот (от низких до сверхвысоких) достигается при сочетании двух частотомеров: гетеродинного и электронно-счётного. Последний, помимо самостоятельного использования в присущем ему диапазоне частот, может быть применён для точного измерения частоты настройки гетеродина при достижении нулевых биений; при этом оказываются излишними кварцевый генератор, градуировочные таблицы и графики.

Резонансные частотомеры

Особенностями резонансных частотомеров, применяемых для измерения высоких и сверхвысоких частот, являются простота конструкции, быстрота функционирования и однозначность результатов измерений; погрешность измерений составляет 0,1-3%.

Резонансный частотомер представляет собой колебательную систему, настраиваемую в резонанс с измеряемой частотой f x возбуждающих её колебаний, которые поступают от исследуемого источника через элемент связи. Резонансная частота определяется по показаниям калиброванного органа настройки. Состояние резонанса фиксируется с помощью встроенного или внешнего индикатора.

Частотомеры, измеряющие частоты от 50 кГц до 100-200 МГц, выполняются в виде колебательного контура из элементов с сосредоточенными постоянными: катушки индуктивности L 0 и конденсатора переменной ёмкости С 0 (рис. 16). В контуре частотомера наводится Э.Д.С. измеряемой частоты f x , например за счёт индуктивной связи с источником колебаний через катушку L 0 или небольшую штыревую антенну, присоединяемую к гнезду Ан. При маломощном источнике связь с последним может быть ёмкостной через конденсатор связи С св (ёмкостью в несколько пикофарад) и проводник связи. Изменением ёмкости конденсатора С 0 контур настраивают в резонанс с частотой fx по максимальным показаниям индикатора резонанса. При этом измеряемая частота f x , равная собственной частоте контура:

f 0 = 1/(2π*(L0C0) 0,5),

определяется по шкале конденсатора С 0 .

При фиксированной индуктивности L 0 диапазон измеряемых частот ограничивается коэффициентом перекрытия под которым понимают отношение максимальной частоты настройки частотомера f м к наименьшей частоте f н при изменении ёмкости контура от начального значения С н до максимального С м. Начальная ёмкость контура С н слагается из начальной ёмкости конденсатора С 0 , ёмкости монтажа и ёмкостей постоянных или подстроечных конденсаторов, включаемых в контур с целью получения требуемого коэффициента перекрытия или для других целей (рис. 17). При необходимости расширения диапазона измеряемых частот частотомер снабжается несколькими катушками различной индуктивности, сменными (рис. 16) или переключаемыми (рис. 17). В последнем случае неиспользуемые катушки (если они не экранированы) желательно замыкать накоротко во избежание отсасывания ими энергии из контура частотомера при частотах настройки, близких к собственным частотам этих катушек; при этом связь с источником колебаний осуществляют через гнездо связи Ан или посредством выносной катушки связи L св из одного или нескольких витков, подключаемой к контуру гибким высокочастотным кабелем (рис. 17).

Индикаторы резонанса позволяют фиксировать состояние резонанса по максимуму тока в контуре или максимуму напряжения на элементах контура. Индикаторы тока должны быть низкоомными, а индикаторы напряжения - высокоомными; тогда потери, вносимые ими в контур, не будут вызывать заметного притупления резонансной характеристики контура.

Рис. 16. Схема резонансного частотомера с индикатором тока и сменными контурными катушками

В качестве индикаторов тока иногда применяют термоэлектрические миллиамперметры с током полного отклонения до 10 мА, включаемые последовательно в контур частотомера (рис. 16); при эксплуатации такого частотомера следует весьма осторожно устанавливать связь с объектом измерений и не допускать перегрузки термоприбора при подходе к резонансу. Простейшим индикатором тока может служить миниатюрная лампочка накаливания Л; погрешность измерений при этом, естественно, возрастает.

В современных частотомерах чаще всего применяют индикаторы напряжения - высокочастотные вольтметры со стрелочными измерителями; они обеспечивают высокую точность индикации при хорошей стойкости к перегрузкам. Простейший такой индикатор (рис. 17, а) состоит из точечного диода Д и чувствительного магнитоэлектрического измерителя И , зашунтированного от высокочастотных составляющих выпрямленного тока конденсатором С2. Частотомер со стрелочным измерителем можно использовать в качестве индикатора напряжённости поля при снятии диаграмм направленности передающих антенн.

Рис. 17. Схемы резонансных частотомеров с индикаторами напряжения и переключаемыми контурными катушками

Если исследуемые колебания являются модулированными, то индикатором может служить высокоомный телефон Т ф (рис. 17, а). При этом резонанс отмечают по наибольшей громкости тона модулирующей частоты. Такой частотомер пригоден для слухового контроля качества работы радиотелефонных передатчиков.

Резонансные частотомеры характеризуются чувствительностью, т. е. минимальным значением подводимой к ним высокочастотной мощности, при котором обеспечивается чёткая индикация резонанса; обычно оно находится в пределах 0,1-5 мВт, а при использовании лампочки накаливания возрастает до 0,1 Вт. С целью повышения чувствительности в индикатор резонанса иногда вводят (после детектора) транзисторный усилитель постоянного тока с большим входным сопротивлением; простейшая схема такого усилителя показана на рис. 17, б.

На сверхвысоких частотах контуры из элементов с сосредоточенными постоянными становятся малоэффективными из-за резкого уменьшения их добротности. В диапазоне частот от 100 до 1000 МГц достаточно хорошие результаты достигаются в частотомерах с контурами смешанного типа, имеющими сосредоточенную ёмкость и распределённую индуктивность (рис. 18). В качестве элемента индуктивности L0 используется криволинейный отрезок (виток) посеребренной медной проволоки или трубки диаметром 2-5 мм. Переключатель В определяет поддиапазон измерений. Настройка частотомера производится изменением рабочей длины витка индуктивности L0 посредством поворотного контактного движка. Верхний предел измеряемых частот ограничивается значением ёмкости монтажа С м. Связь с источником исследуемых колебаний осуществляется через виток связи L1.

Рис. 18. Схема резонансного частотомера с контуром смешанного типа

На рис. 19 приведена схема широкодиапазонного однопредельного частотомера с коэффициентом перекрытия в пределах 5-10; здесь элементом индуктивности контура является металлическая пластинка Пл, согнутая в дугу и соединённая со статором St конденсатора переменной ёмкости. По пластинке скользит движок, механически и электрически связанный с ротором Rot конденсатора. При повороте ротора одновременно увеличиваются (или уменьшаются) как ёмкость контура, так и его индуктивность. Такие частотомеры наряду с широким диапазоном измерений имеют довольно высокую добротность при малых габаритах. В диапазонах метровых, дециметровых и сантиметровых волн для измерения параметров электромагнитных колебаний применяются приборы, использующие колебательные системы с распределёнными постоянными - отрезки линий передач и объёмные резонаторы.

Рис. 19. Схема широкодиапазонного однопредельного резонансного частотомера СВЧ

Для повышения стабильности градуировочной характеристики элементы контура частотомера должны иметь прочную и жёсткую конструкцию и изготовляться из материалов с малым температурным коэффициентом. Наибольшая погрешность, обусловленная влиянием внешних факторов, имеет место при измерении самых высоких частот каждого поддиапазона, когда ёмкость конденсатора С 0 мала. Для снижения этой погрешности иногда увеличивают начальную ёмкость контура посредством включения параллельно конденсатору С 0 постоянного или подстроечного конденсатора (С1 на рис. 17, а). При этом уменьшается коэффициент перекрытия по частоте, что способствует снижению погрешности измерения частоты, но одновременно увеличивает число потребных поддиапазонов. Погрешность измерений также уменьшается, если управление органом настройки производить через верньерное устройство с замедлением в несколько десятков раз. В приборах промышленного изготовления рукоятку верньера часто снабжают шкалой, разбитой на 100 делений, а на основной - шкале органа настройки частотомера наносят деления, отмечающие число полных поворотов рукоятки верньера. При совместном использовании обеих шкал удаётся получить несколько тысяч отсчётных точек; соответствующие им частоты определяются с помощью таблиц или графиков.

Перестройка частотомера, возбуждаемого источником колебаний частоты f x , вызывает изменение тока в его контуре в соответствии с резонансной кривой последнего (рис. 20). Чем выше добротность контура, тем острее его резонансная кривая и тем меньше возможная ошибка при фиксации резонанса. Для достижения высокой добротности элементы контура должны иметь малые потери, а связь контура с индикатором резонанса и исследуемым источником должна быть возможно слабее.

Связь с индикатором можно уменьшить, применив, например, ёмкостный делитель напряжения (рис. 17, б) с отношением ёмкостей С2/С1 >> 1. Следует, однако, учитывать, что ослабление связи с контуром ведёт к необходимости повышения чувствительности индикатора или усиления связи с исследуемым источником.

При использовании в частотомере прямочастотного конденсатора можно получить почти равномерную шкалу частот. Градуируют резонансные частотомеры при помощи образцовых гетеродинных частотомеров, а в диапазонах СВЧ для этого применяют измерительные линии. Приближенную градуировку можно выполнить, имея измерительный генератор или передатчик с плавным диапазоном частот.

Рис. 20. Резонансная характеристика резонансного частотомера

При измерениях частотомер или его элемент связи вносят в зону излучения исследуемого источника. Подбором их взаимного расположения устанавливают такую связь, чтобы при резонансе стрелка индикатора находилась примерно в середине его шкалы.

При малой чувствительности частотомера приходится усиливать связь с источником колебаний; это ведёт к уплощению резонансной характеристики частотомера, что затрудняет точную фиксацию состояния резонанса. Для уменьшения возможной ошибки применяют способ двух отсчётов. После приближённой настройки частотомера в резонанс с измеряемой частотой f х изменением ёмкости С 0 расстраивают контур сперва в одну, а затем в другую сторону от резонансной частоты до получения одного и того же показания индикатора (I 1-2) примерно в пределах 50-70% резонансного значения I м (рис. 20). Так как при этом используются крутые склоны резонансной кривой, то определить частоты настройки контура f 1 и f 2 , соответствующие току можно с большой точностью. Измеряемая частота f х = (f 1 + f 2)/2.

Если исследуемые колебания несинусоидальны, то возможна настройка частотомера на одну из гармоник. При этом частотомер обнаружит настройку и на ряд других частот, кратных основной частоте колебаний. Последняя определится как самая низкая из ряда найденных резонансных частот.

Если Э.Д.С., наводимая в контуре частотомера, недостаточна для нормальной работы индикатора резонанса, то измерение можно выполнить способом реакции (поглощения, абсорбции): настройку в резонанс определяют по воздействию частотомера на режим генератора, от которого измерительный контур поглощает некоторую энергию. Между контурами генератора и частотомера устанавливают достаточно сильную связь и плавно изменяют настройку последнего. При резонансе постоянная составляющая анодного (или коллекторного) тока генератора достигает максимума, а постоянная составляющая тока управляющей сетки (или базы) резко падает, что может быть обнаружено при включении чувствительного измерителя постоянного тока в одну из указанных цепей. На частоту генерируемых колебаний частотомер не влияет, ибо при резонансе он вносит в контур генератора лишь активное сопротивление.

Резонансный частотомер является прибором пассивного действия, так как его работа основана на поглощении энергии источника измеряемой частоты. Поэтому он непригоден для непосредственного измерения частоты настройки радиоприёмников и изолированных колебательных контуров. Однако несущую частоту радиостанции, на которую настроен приёмник, можно измерить достаточно точно способом реакции. Для этого контур частотомера связывают с антенной цепью приёмника посредством включаемой в эту цепь катушки связи или приближением к магнитной антенне. Настройку частотомера изменяют до получения резонанса, который обнаруживается по резкому спаду громкости звуковых сигналов, воспроизводимых приёмником.

Вряд ли будет преувеличением сказать, что тестер семейства М-83х есть у каждого радиолюбителя. Простой, доступный, дешёвый. Вполне достаточный для электрика.

Но для радиолюбителя он имеет изъян при измерениях переменного напряжения. Во-первых, малую чувствительность, во-вторых, предназначен для измерений напряжений частотой 50 Гц. Часто у начинающего любителя нет других приборов, а хочется измерить, например, напряжение на выходе усилителя мощности и оценить его АЧХ. Можно ли это сделать?

В интернете все повторяют одно и то же – «не выше 400 Гц». Так ли это? Давайте посмотрим.

Для проверки собрана установка из тестера М-832, звукового генератора ГЗ-102 и
лампового вольтметра В3-38.

Судя по имеющимся данным, многочисленные приборы семейства М-83х или D-83x собраны практически по одной схеме, поэтому высока вероятность того, что результаты измерений будут близки. Кроме того, в данном случае меня мало интересовала абсолютная погрешность данного тестера, интересовали только его показания в зависимости от частоты сигнала.

Уровень был выбран около 8 Вольт. Это близко к максимальному выходному напряжению генератора ГЗ-102 и близко к напряжению на выходе УМЗЧ средней мощности.

Лучше было бы сделать ещё серию измерений с мощным УНЧ нагруженным на повышающий трансформатор, но не думаю, что результаты изменятся разительно.
Для удобства оценки АЧХ в дБ выбран уровень 0 дБ на пределе 10 В вольтметра В3-38. При изменении частоты сигнала уровень чуть подстраивался, но изменения не превышали долей дБ, ими можно пренебречь.

Результаты


В приведённой таблице К - коэффициент, на который надо умножить результат измерений тестера на данной частоте с учётом спада АЧХ.


Для получения табличных результатов в дБ на выходе генератора устанавливался уровень напряжения, полученного для каждой частоты, а разность в дБ считывалась и заносилась в таблицу. Некоторые неточности из-за округления в 0,5 дБ показаний лампового вольтметра и округления последней цифры показаний тестера. Считаю, в данном случае систематическую ошибку в 1 дБ вполне допустимой т. к. на слух она неощутима.

Вывод

Итак, что же получилось?

Частотная характеристика тестера верна не до 400 Гц, а до 4…6 кГц, выше начинается спад, который можно учесть при помощи таблицы и, значит, получить относительно достоверные результаты в диапазоне 20…20000 Гц и даже выше.


Для того чтобы утверждать, что поправки годятся для всех тестеров, нужно собрать статистику. К сожалению, мешком тестеров не располагаю.

Не надо забывать, что тестер измеряет переменное напряжение по схеме однополупериодного выпрямителя с его недостатками, такими как возможность измерений только синусоидального напряжения без постоянной составляющей, при малом измеряемом напряжении погрешность будет расти.

Как можно улучшить тестер М-832 для измерений переменных напряжений?

Можно поставить дополнительный переключатель пределов «200-20 В» и ещё один резистор шунта. Но это требует разборки и доработки тестера, надо разбираться в схеме и иметь прибор для калибровки. Считаю, что это нецелесообразно.

Лучше сделать отдельную приставку, усиливающую и выпрямляющую напряжение. Выпрямленное напряжение подавать на тестер, включённый на измерение постоянного напряжения.
Но это тема для другой статьи.

В конструкторской деятельности многих радиолюбителей усилитель звуковой частоты (34) занимает одно из первых мест. От усилителя 34 в значительной степени зависит качество звучания радиовещательного приемника, телевизора, магнитофона.

В описаниях усилителей 34, предназначенных для электрофонов, магнитофонов, радиовещательных приемников, обычно указывают их номинальную выходную мощность, номинальное входное напряжение, коэффициент гармоник и параметры частотной характеристики. По этим основным данным уже можно судить о качестве работы усилителя и пригодности его для тех или иных целей.

Напомним вкратце, что собой представляют названные параметры усилителя 34.

Номинальная выходная мощность Р НО м, выраженная в ваттах или милливаттах,-это мощность, выделяемая на нагрузке (звуковой катушке динамической^ головки громкоговорителя, обмотке головного телефона), при которой нелинейные искажения, вносимые усилителем, соответствуют указанным в описании. При дальнейшем увеличении выходной мощности эти искажения значительно* возрастают.

В процессе усиления любого сигнала из-за нелинейности характеристик транзисторов или электронных ламп в усиливаемом сигнале появляются колебания частотой в 2, 3, 4 и более раз выше основной частоты, т. е. появляются’ вторая, третья и т. д. гармоники сигнала. Они и искажают усиливаемый сигнал. Гармонические искажения растут по мере увеличения выходной мощности усилителя 34*. Оценивают их коэффициентом гармоник. Мощность, при которой искажения (коэффициент гармоник) достигают 10%, принято называть максимальной выходной мощностью усилителя 34 (ее обозначают Ртах).

Коэффициент гармоник Кг, измеряемый при синусоидальном входном сигнале, можно выразить процентным отношением суммарного напряжения всех гармоник U r к выходному напряжению и вых:

номерность АЧХ в рабочем диапазоне, пересекает АЧХ на частотах 75 в 11 ООО Гц. Следовательно, рабочий диапазон частот усилителя простирается от 75 до И ООО Гц.

Многие усилители 34 кроме регулятора громкости оснащены еще двумя (реже - тремя и более) регуляторами тембра - по низшим и высшим звуковым частотам. АЧХ таких усилителей снимают не менее трех раз, причем при входном напряжении, пониженном примерно на 20 дБ (в 10 раз) по сравнению* с номинальным (во избежание перегрузки при подъеме усиления на краях рабочего диапазона). Сначала оба регулятора тембра такого усилителя 34 устанавливают в положения, соответствующие спаду АЧХ на краях диапазона. Полученная АЧХ может иметь вид кривой 1 (рис. 107). Затем оба регулятора тембра переводят в другие крайние положения (подъем АЧХ на краях диапазона). АЧХ усилителя в этом случае может иметь вид кривой 2. После этого регуляторы тембра устанавливают в средние положения и снимают АЧХ еще раз. Если она близка к кривой 3, то на этом измерения заканчивают, а если значительно отличается от нее, то путем проб находят такие положения регуляторов тембра, при которых АЧХ получается наиболее ровной и параллельной оси частот в возможно более широкой полосе, и на ручках регуляторов делают соответствующие отметки.

Из графиков’на рис. 107 ясно видно, что у данного усилителя 34 пределы регулирования тембра на низшей частоте 63 Гц составляют +6…-6 дБ, а на высшей, равной 11 000 Гц,-примерно +5…-10 дБ. Так с помощью простых приборов лаборатории, пользуясь изложенной методикой, можно с достаточной для радиолюбителя точностью измерить основные параметры практически любого усилителя 34.

Для измерения чувствительности , выходной мощности и коэффициента гармоник усилителя нужны осциллограф, вольтметр переменного тока, звуковой генератор (ЗГ ) и эквивалент нагрузки исследуемого усилителя. Последний представляет собой проволочный резистор, сопротивление которого равно полному сопротивлению звуковой катушки динамической головки (или громкоговорителя) усилителя. Его мощность рассеяния должна быть не меньше мощности динамической головки (если в громкоговорителе усилителя несколько головок, то их общей мощности).

Измерение коэффициента гармоник, вносимые усилителем в сигнал, оценивают по методике, используя любой низкочастотный осциллограф. В этом случае измерения начинают со снятия амплитудной характеристики усилителя - зависимости выходного напряжения U вых усиливаемого сигнала частотой 1000 Гц от входного напряжения U вх при постоянной нагрузке R н , равной сопротивлению ее эквивалента R .

Схема соединения измерительных приборов с усилителем, амплитудную характеристику которого надо снять, приведена на рис. 1, а. Усилитель и звуковой генератор должны питаться от отдельных источников. К выходу усилителя вместо динамической головки (или громкоговорителя) подключают эквивалент нагрузки R э , а к нему вход «Y» осциллографа. Регулятор громкости устанавливают на максимум и подают на вход усилителя от звукового генератора сигнал частотой 1000 Гц напряжением 30-40 мВ. Развертку горизонтального отклонения луча осциллографа устанавливают такой, чтобы на его экране хорошо просматривалось изображение одного колебания. Измерив входное напряжение U вх , вольтметр переменного тока PU переключают на эквивалент нагрузки R э и измеряют выходное напряжение усилителя U вых . Результаты измерений фиксируют (см. табл.).

Амплитудная характеристика усилителя (условия измерения)

Uвх , мВ

Uвых , м В

1200

1600

2000

2400

2800

3200

3600

3800

4000

4100

Рис. 1. Схема измерения основных параметров усилителя ЗЧ

Не изменяя частоту сигнала ЗГ , увеличивают ступенями через каждые 10 мВ его напряжение, заносят в таблицу результаты измерений. Входное напряжение увеличивают до тех пор, пока на экране не появится заметное на глаз срезание «верхушек» синусоиды (рис. 2, б). Это явление происходит из-за симметричного ограничения напряжения выходного сигнала и сопровождается увеличением коэффициента гармоник усилителя примерно до 10%. Оно означает, что выходная мощность достигла максимальной Р макс . После этого входной сигнал ЗГ уменьшают до пропадания заметных на глаз искажений синусоиды и считают, что при этом усилитель отдает нагрузке номинальную выходную мощность P ном . Выходные напряжения на эквиваленте нагрузки, соответствующие максимальной Р ма х и номинальной Р ном выходным мощностям, в таблице следует выделить.

Рис. 2. Построение амплитудной характеристики усилителя 3Ч

Далее по результатам измерений, занесенным в таблицу, строят амплитудную характеристику усилителя (рис. 2). До точки «а» она прямолинейна, а затем начинает отклоняться вниз, что говорит о нарушении пропорциональности между входным и выходным напряжениями усилителя и появлении искажений усиливаемого сигнала. Теперь, пользуясь формулой Р вых = U вых 2 /R н , можно подсчитать выходную мощность усилителя для различных значений U вых . На рис. 2 параллельно оси U вых слева помещена вторая вертикальная ось Р вых , на которой отмечены расчетные выходные мощности усилителя в ваттах.

Рис. 3. Схема измерения коэффициента гармоник

Точка «а» на графике, с которой начинается перегиб амплитудной характеристики, обычно соответствует номинальной выходной мощности усилителя. По амплитудной характеристике можно определить и численное значение чувствительности усилителя - оно соответствует значению U вх при Р ном .

Численное значение коэффициента гармоник К г усилителя ЗЧ можно измерить с помощью заградительного фильтра L1C1C2 (рис. 3), настроенного на основную частоту 1000 Гц, который включают между выходом усилителя, нагруженного на эквивалент нагрузки R9, и вольтметром переменного тока PU . Катушку L1 этого фильтра, содержащую 290 витков провода ПЭВ-2, наматывают на ферритовом кольце 2000НМ типоразмера К20х12х6 с помощью челнока. Конденсаторы С1 и С2 фильтра типа МБМ или КБ.

Сначала переключатель «S» устанавливают в положение «1», соответствующее отключенному фильтру, и вольтметром PU измеряют напряжение U вых . Допустим, U вых равно 3 В (3000 мВ). Затем, переведя переключатель «S» в положение «2», включают заградительный фильтр и измеряют напряжение гармоник U г . Предположим, что это напряжение будет 70 мВ. Коэффициент гармоник К г подсчитывают по приведенной ранее приближенной формуле:

К г ≈ U г / U вых ∙ 100% ≈ 70 ∙ 100 / 3000 ≈ 2,3%,

где:

К г – коэффициент гармоник, [ %];

U г – напряжение гармоник, [мВ];

U вых – выходное напряжение [ мВ ] .

По такой методике можно с достаточной точностью измерить чувствительность, выходную мощность и коэффициент гармоник практически любого усилителя ЗЧ. Для стереофонического усилителя параметры каждого канала измеряют раздельно, сравнивают и, если надо, выравнивают соответствующим подбором деталей и режимов работы транзисторов.

Методы измерения . Измерение частоты осуществляется путем сравнения ее с частотой частотно - задающего процесса, принятой за единицу (частотно - задающий процесс может быть эталонным, образцовым или рабочим в зависимости от меры, его воспроизводящей). Этот вид измерений составляет одну из важных задач измерительной техники. В электронике, радиотехнике, автоматике и других близких к ним отраслях используются сигналы самых разнообразных частот - от долей герца до тысяч ГГц.

Различают аналоговый и цифровой способы измерения частоты. Аналоговый способ - это косвенный метод измерения, основанный на сравнении измеряемой частоты с частотой другого источника (как правило, образцового) с помощью осциллографа, гетеродинного и резонансного метода.

Для сравнения необходимо иметь образцовый генератор, точность которого по крайней мере в 5 раз выше точности контролируемого источника, и устройство для сличения частот. Часто таким устройством служит осциллограф.

Для измерения частот, кратных известной частоте, применяют метод фигур Лиссажу. Напряжение известной частоты fобр образцового источника подается на один вход осциллографа (например, вход X), а напряжение измеряемой частоты fизм - на второй (например, вход Y). Частоту образцового генератора перестраивают до получения на экране устойчивого изображения простейшей интерференционной фигуры: прямой, окружности или эллипса. Появление одной из этих фигур свидетельствует о равенстве частот (отношение fизм:fобр = 1:1). Когда частоты не равны друг другу, но кратны, на экране осциллографа наблюдаются более сложные фигуры.

Соотношение частот определяется следующим способом. Через изображение фигуры мысленно проводят две прямые: горизонтальную и вертикальную. Отношение числа т пересечений горизонтальной прямой с фигурой к числу п пересечений вертикальной прямой с фигурой равно отношению частоты, поданной на вход канала Y, к частоте, поданной на вход канала X:

Рис. 3. 1

Если сравниваемые частоты кратны, но отношение их велико, применяют метод круговой развертки с модуляцией яркости. Напряжение образцовой частоты fобр подается одновременно на оба входа осциллографа со сдвигом по фазе на 90°, достигаемым с помощью фазовращателя. Усиление обоих каналов регулируют так, чтобы луч вычерчивал на экране окружность. Напряжение измеряемой частоты подают в канал управления яркостью. Частоту образцового источника перестраивают до получения на экране неподвижного изображения штриховой окружности (рис. 3. 1). Число ярких дуг или темных промежутков между ними однозначно определяет отношение N= fизм / fобр (7:1 на рис. 3. 1).



Если отношение частот fизм и fобр немного отличается от целого числа, т. е. fизм = Nfобр Fp (частота Fp сравнительно мала), то фигура вращается, причем направление вращения показывает знак расхождения частот (его проще всего определить экспериментально, фиксируя направление вращения при заведомо установленных соотношениях f ’изм > Nfo6p и f ’изм > Nfo6p). Степень расхождения (и обусловленную им погрешность измерения частоты) можно определить следующим образом: сосчитать число d дуг, пробегающих через определенную радиальную линию на экране за фиксированный промежуток времени . Тогда расхождение Fp = d /t.

Цифровой метод (метод дискретного счета) занимает доминирующее положение в современной измерительной технике. Он обладает многими достоинствами: очень широкий диапазон частот, которые можно измерить одним прибором (например, от 10 Гц до 32 ГГц); высокая точность измерений; получение отсчета в цифровой форме; возможность обработки результатов измерений с помощью ЭВМ, и т. д.

Рис. 3. 2

Задача измерения частоты цифровым методом обратна задаче измерения периода. Если при измерении периода интервал времени t x = Tx заполнялся метками времени Т 0 , то при измерении частоты эталонный интервал времени Т 0 заполняется импульсами с периодом Т x = 1/f x . Для этого исследуемый сигнал преобразуется в периодическую последовательность коротких импульсов, моменты появления которых соответствуют моментам перехода синусоидального сигнала через нулевой уровень с производной одинакового знака. Таким образом, период следования импульсов равен периоду исследуемого сигнала. Из двух соседних импульсов эталонной частоты, которые разделены интервалом времени Т 0 , формируется строб-импульс - временные ворота длительностью t = Т 0 . Число попадающих в ворота импульсов п = t / Т x . Очевидно, что искомая частота будет определяться из соотношения fx = п /t.

Измерения оказываются косвенными. Чтобы получились прямые показания, в частотомерах. Построенных по схеме с жесткой логикой (без микропроцессора), устанавливают длительности временных ворот t = с, где p = 0; ±1; ±2; . . . (на панели прибора переключатель длительности ворот обозначен надписью ВРЕМЯ ИЗМЕРЕНИЯ). При р=0 (t = 1c) fx = n Гц;

если t == 1мс, то fx == п кГц.

Цифровой частотомер. Современные цифровые частотомеры - это приборы многофункциональные. Они измеряют частоту синусоидального и импульсного сигналов, период следования сигналов, длительность импульсов, интервалы времени, заданные двумя импульсами от одного или разных источников, вариацию частоты, отношения двух частот; ведут счет количества поступивших на вход импульсов и др. Изображенная на рис. 3. 3 структурная схема относится к режиму измерения частоты. Работа схемы заключается в следующем.

Периодический сигнал, частоту которого необходимо измерить, поступает на вход прибора (обычно его обозначают буквой А). После усиления или ослабления во входном блоке сигнал подается на формирователь, где преобразуется в периодическую последовательность импульсов с частотой следования f x . Эти импульсы подводятся к входу 1 временного селектора и проходят через него в счетчик, если на входе 2 селектора имеется строб-импульс. Строб-импульс формируется из напряжения высокочастотного кварцевого генератора. Так как период его выходного сигнала мал, то для получения требуемой длительности строб-импульса в схеме предусмотрен делитель частоты (на передней панели прибора он обозначен как МНОЖИТЕЛЬ ПЕРИОДА). Делитель представляет собой набор декад, каждая из которых уменьшает частоту следования импульсов в 10 раз. Коэффициент деления q зависит от числа включенных декад. Из периодической последовательности импульсов, образующейся на выходе делителя, блок автоматики (схема временных ворот) формирует строб-импульс (временные ворота) длительностью t == Т 0 , подаваемый на вход 2 временного селектора и определяющий продолжительность счета.

Рис. 3. 3

Рассмотрим процесс измерения отношения частот Fx1 / Fx2 (Fx1 >Fx2). Большая частота Fx1 подается на вход частотомера, а меньшая частота Fx2 - через дополнительный формирователь на блок автоматики (при этом кварцевый генератор и делитель отключаются). Через временной селектор проходят и подсчитываются импульсы с периодом Tx1 в течение периода Тx2. Число импульсов m = Тx2 / Тx1 = Fx1 / Fx2 . Для повышения точности измерения частота Fx2 подается через делитель (отключается только кварцевый генератор).

Погрешности измерения частоты аналогичны погрешностям, рассмотренным при анализе измерения временных интервалов.